分析 若命题p∨q为真命题,p∧q,命题p,q一真一假,进而可得满足条件的a的取值范围.
解答 解:若x2+y2-ax+y+1=0表示圆,
则a2+1-4>0,
解得:a∈(-∞,$-\sqrt{3}$)∪($\sqrt{3}$,+∞),
故命题p:a∈(-∞,$-\sqrt{3}$)∪($\sqrt{3}$,+∞),
若方程2ax+(1-a)y+1=0表示斜率大于1的直线,
则$\frac{2a}{a-1}$>1解得:a∈(-∞,-1)∪(1,+∞),
故命题q:a∈(-∞,-1)∪(1,+∞),
若p∨q为真命题,p∧q为假命题,
则p,q一真一假;
当p真q假时,a∈(-∞,$-\sqrt{3}$)∪($\sqrt{3}$,+∞)且a∈[-1,1],不存在满足条件的a值;
当p假q真时,a∈[-$\sqrt{3}$,$\sqrt{3}$]且a∈(-∞,-1)∪(1,+∞),
故a∈[-$\sqrt{3}$,-1)∪(1,$\sqrt{3}$]
点评 本题以命题的真假判断与应用为载体,考查了复合命题,圆的一般方程,直线斜率等知识点,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 9 | C. | -3 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{2}{5}$ | B. | $\frac{2}{5}$ | C. | $-\frac{3}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 高中 | 本科 | 硕士 | 博士 | 合计 | |
| 35岁以下 | 10 | 150 | 50 | 35 | 245 |
| 35~50岁 | 20 | 100 | 20 | 13 | 153 |
| 50岁以上 | 30 | 60 | 10 | 2 | 102 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,$\sqrt{2}$+1) | B. | ($\sqrt{2}$,$\sqrt{2}$+1) | C. | ($\sqrt{2}$,2) | D. | ($\sqrt{2}$,2)∪(2,$\sqrt{2}$+1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com