精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy中,已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,且经过点($\sqrt{2}$,1),过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:AP⊥OM;
(Ⅲ)试问$\overrightarrow{OP}$•$\overrightarrow{OM}$是否为定值?若是定值,请求出该定值;若不是,请说明理由.

分析 (Ⅰ)由已知$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,又$\frac{2}{a^2}+\frac{1}{b^2}=1$,a2=b2+c2.联立解得即可得出椭圆C的方程.
(Ⅱ)由(Ⅰ)知,A(-2,0),B(2,0),直线BM斜率显然存在,设BM方程为y=k(x-2),则M(-2,-4k),与椭圆方程联立化为(2k2+1)x2-8k2+8k2-4=0,△>0,利用根与系数的关系,只要证明$\overrightarrow{AP}•\overrightarrow{OM}$=0即可.
(Ⅲ)利用数量积运算性质即可得出.

解答 (Ⅰ)解:由已知$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,又$\frac{2}{a^2}+\frac{1}{b^2}=1$,∴a2=b2+c2
联立解得:a2=4,b2=2.
∴椭圆C的方程为$\frac{x^2}{4}+\frac{y^2}{2}=1$.
(Ⅱ)证明:由(Ⅰ)知,A(-2,0),B(2,0),直线BM斜率显然存在,
设BM方程为y=k(x-2),则M(-2,-4k),
由$\left\{\begin{array}{l}y=k(x-2)\\ \frac{x^2}{4}+\frac{y^2}{2}=1\end{array}\right.$,得(2k2+1)x2-8k2+8k2-4=0,△>0,
则$2{x_P}=\frac{{8{k^2}-4}}{{2{k^2}+1}}$,∴${x_P}=\frac{{4{k^2}-2}}{{2{k^2}+1}}$,${y_P}=k({x_P}-2)=\frac{-4k}{{2{k^2}+1}}$,即$P(\frac{{4{k^2}-2}}{{2{k^2}+1}},\frac{-4k}{{2{k^2}+1}})$.
又$\overrightarrow{AP}=(\frac{{8{k^2}}}{{2{k^2}+1}},\frac{-4k}{{2{k^2}+1}})$,$\overrightarrow{OM}=(-2,-4k)$,
∴$\overrightarrow{AP}•\overrightarrow{OM}=\frac{{-16{k^2}}}{{2{k^2}+1}}+\frac{{16{k^2}}}{{2{k^2}+1}}=0$,即AP⊥OM.
(Ⅲ)解:$\overrightarrow{OP}•\overrightarrow{OM}=(\frac{{4{k^2}-2}}{{2{k^2}+1}},\frac{-4k}{{2{k^2}+1}})•(-2,-4k)=\frac{{-8{k^2}+4+16{k^2}}}{{2{k^2}+1}}=\frac{{8{k^2}+4}}{{2{k^2}+1}}=4$,
∴$\overrightarrow{OP}•\overrightarrow{OM}$为定值4.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次的根与系数的关系、向量垂直于数量积的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|$\frac{2x-3}{x+1}$≤0,x∈Z},则A={0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}满足:a3=7,a5+a7=26,数列{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=3an(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在开展研究性学习活动中,班级的学习小组为了解某生活小区居民用水量y(吨)与气温x(℃)之间的关系,随机统计并制作了5天该小区居民用水量与当天气温的对应表:
日期9月5日10月3日10月8日11月16日12月21日
气温x(℃)1815119-3
用水量y(吨)6957454732
(1)若从这随机统计的5天中任取2天,求这2天中有且只有1天用水量超过50吨的概率(列出所有的基本事件);
(2)由表中数据求得线性回归方程中的$\widehat{b}$≈1.6,试求出$\widehat{a}$的值,并预测当地气温为5℃时,该生活小区的用水量.(参考$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,公式:$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.解析:解关于x的不等式:ax2-(a-1)x-1<0(a<0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{PF}$=-4$\overrightarrow{FQ}$,则|QF|=(  )
A.$\frac{7}{2}$B.3C.$\frac{5}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设y1=$\frac{ln2}{2}$,y2=$\frac{ln3}{3}$,y3=$\frac{ln6}{6}$,则(  )
A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥1}\\{2x-y≥4}\end{array}\right.$,则目标函数z=3x+y的最小值为$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=2,则$\overrightarrow{AP}$•$\overrightarrow{AB}$+$\overrightarrow{AP}$•$\overrightarrow{AD}$=8.

查看答案和解析>>

同步练习册答案