精英家教网 > 高中数学 > 题目详情
15.如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=2,则$\overrightarrow{AP}$•$\overrightarrow{AB}$+$\overrightarrow{AP}$•$\overrightarrow{AD}$=8.

分析 利用向量的加法运算转化为$\overrightarrow{AP}•\overrightarrow{AC}$,展开数量积,运用向量在向量方向上投影的概念得答案.

解答 解:如图,

设AC∩BD=O,又AP⊥BD,AP=2,
则$\overrightarrow{AP}$•$\overrightarrow{AB}$+$\overrightarrow{AP}$•$\overrightarrow{AD}$=$\overrightarrow{AP}(\overrightarrow{AB}+\overrightarrow{AD})=\overrightarrow{AP}•\overrightarrow{AC}$
=$\overrightarrow{AP}•2\overrightarrow{AO}=2|\overrightarrow{AP}||\overrightarrow{AO}|cos∠OAP$=$2|\overrightarrow{AP}{|}^{2}=2×{2}^{2}=8$.
故答案为:8.

点评 本题考查平面向量数量积的运算,考查了向量在向量方向上投影的概念,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,且经过点($\sqrt{2}$,1),过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:AP⊥OM;
(Ⅲ)试问$\overrightarrow{OP}$•$\overrightarrow{OM}$是否为定值?若是定值,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a=0.61.2,b=20.3,c=log0.33,则a,b,c之间的大小关系为(  )
A.c<b<aB.a<c<bC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sinθ=-$\frac{1}{3}$,θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),则sin($\frac{3π}{2}$-θ)值是(  )
A.-$\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知sinθ=-$\frac{1}{3}$,θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),则sin($\frac{π}{2}$-θ)值是(  )
A.$\frac{{2\sqrt{2}}}{3}$B.-$\frac{{2\sqrt{2}}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=lg(2sinx-$\sqrt{3}$)的定义域是{x|$\frac{π}{3}+2kπ<x<\frac{2π}{3}+2kπ,k∈Z$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A、B、C的对边分别为a、b、c,关于x的不等式x2•cosC+4x•sinC+6<0的解集是空集,
(1)求角C的最大值;
(2)若c=$\frac{7}{2}$,三角形的面积S=$\frac{3}{2}\sqrt{3}$,求当角C最大时a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.圆心为(2,1),且与x轴相切的圆的方程为(x-2)2+(y-1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将函数f(x)=sin(2x+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$)的图象沿x轴向左平移$\frac{π}{8}$个单位后,得到一个偶函数的图象,则φ的值为$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案