精英家教网 > 高中数学 > 题目详情
3.已知sinθ=-$\frac{1}{3}$,θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),则sin($\frac{3π}{2}$-θ)值是(  )
A.-$\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

分析 由条件利用同角三角函数的基本关系、诱导公式,求得sin($\frac{3π}{2}$-θ)值.

解答 解:∵sinθ=-$\frac{1}{3}$,θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴cosθ=$\sqrt{{1-sin}^{2}θ}$=$\frac{2\sqrt{2}}{3}$,则sin($\frac{3π}{2}$-θ)=-cosθ=-$\frac{2\sqrt{2}}{3}$,
故选:A.

点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在开展研究性学习活动中,班级的学习小组为了解某生活小区居民用水量y(吨)与气温x(℃)之间的关系,随机统计并制作了5天该小区居民用水量与当天气温的对应表:
日期9月5日10月3日10月8日11月16日12月21日
气温x(℃)1815119-3
用水量y(吨)6957454732
(1)若从这随机统计的5天中任取2天,求这2天中有且只有1天用水量超过50吨的概率(列出所有的基本事件);
(2)由表中数据求得线性回归方程中的$\widehat{b}$≈1.6,试求出$\widehat{a}$的值,并预测当地气温为5℃时,该生活小区的用水量.(参考$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,公式:$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥1}\\{2x-y≥4}\end{array}\right.$,则目标函数z=3x+y的最小值为$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知p:关于x的不等式x2-(2m+9)x+m(m+9)<0,q:关于x的不等式x2-x-6<0,集合M={x|x2-(2m+9)x+m(m+9)<0},N={x|x2-x-6<0}.
(1)当m=1时,求集合M;
(2)若p是q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.等差数列{an}中,a1=33,d=-4,若前n项和Sn得最大值,则n=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设已知向量$\vec a$=(sinωx,$\sqrt{3}$cosωx),$\vec b$=(cosωx,cosωx),函数f(x)=$\vec a$•$\vec b$+m(其中ω>0,m∈R),且f(x)的图象在y轴右侧的第一个高点的横坐标为$\frac{π}{12}$.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)如果f(x)在区间[-$\frac{π}{3}$,$\frac{5π}{12}}$]上的最小值为$\sqrt{3}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=2,则$\overrightarrow{AP}$•$\overrightarrow{AB}$+$\overrightarrow{AP}$•$\overrightarrow{AD}$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过点P(3,4)的圆x2+y2=25的切线方程为3x+4y-25=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.正四棱柱的底面边长为2,侧棱长为3,在此棱柱内放入一个半径为1的小球,当小球在棱柱内部自由运动时,则在棱柱内部小球所不能到达的空间的体积为24-$\frac{7π}{3}$.

查看答案和解析>>

同步练习册答案