精英家教网 > 高中数学 > 题目详情
14.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥1}\\{2x-y≥4}\end{array}\right.$,则目标函数z=3x+y的最小值为$\frac{13}{3}$.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合的得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥1}\\{2x-y≥4}\end{array}\right.$,作出可行域如图,
联立$\left\{\begin{array}{l}{x+y=1}\\{2x-y=4}\end{array}\right.$,解得A($\frac{5}{3}$,$-\frac{2}{3}$),
化目标函数z=3x+y,
由图可知,当直线z=3x+y过A时,直线在y轴上的截距最小,z有最小值为:3×$\frac{5}{3}$-$\frac{2}{3}$=$\frac{13}{3}$.
故答案为:$\frac{13}{3}$.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数y=|x+3|,向量程序框表示的是给出x值,求所对应的函数值的算法,请将该程序框图补充完整,其中①处应填x≥-3;②处应填y=-x-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,且经过点($\sqrt{2}$,1),过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:AP⊥OM;
(Ⅲ)试问$\overrightarrow{OP}$•$\overrightarrow{OM}$是否为定值?若是定值,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(2)=3,对于?m,n∈N*满足f(m+n)=f(m)+f(n)+mn,则f(n)=$\frac{{n}^{2}+n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.计算:i+i-2+i-3+i-4=2i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=ax2+bx,且-1≤f(-1)≤2,2≤f(1)≤4.求f(-2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a=0.61.2,b=20.3,c=log0.33,则a,b,c之间的大小关系为(  )
A.c<b<aB.a<c<bC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sinθ=-$\frac{1}{3}$,θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),则sin($\frac{3π}{2}$-θ)值是(  )
A.-$\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.圆心为(2,1),且与x轴相切的圆的方程为(x-2)2+(y-1)2=1.

查看答案和解析>>

同步练习册答案