分析 设f(-2)=mf(-1)+nf(1),由二次函数的解析式,可得a,b的恒等式,解方程可得m=3,n=1,再由不等式的性质,即可得到所求范围.
解答 解:f(x)=ax2+bx,
可得f(-1)=a-b,f(1)=a+b,f(-2)=4a-2b,
设f(-2)=mf(-1)+nf(1),
则4a-2b=m(a-b)+n(a+b)=(m+n)a+(-m+n)b,
可得$\left\{\begin{array}{l}{m+n=4}\\{-m+n=-2}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=3}\\{n=1}\end{array}\right.$,
即f(-2)=3f(-1)+f(1),
由-1≤f(-1)≤2,2≤f(1)≤4,
可得-3+2≤3f(-1)+f(1)≤6+4,
即-1≤f(-2)≤10.
则f(-2)的范围是[-1,10].
点评 本题考查不等式的解法和运用,注意运用待定系数法和恒等式知识,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{2}$ | B. | 3 | C. | $\frac{5}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4) | B. | (-∞,4] | C. | (3,4] | D. | (3,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {5,6} | B. | {3,4,5,6} | C. | {1,2,5,6} | D. | ∅ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com