精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=cosx+xsinx-m,x∈[-π,π],若f(x)有4个零点,则m的取值范围为(  )
A.(-1,1)B.(1,$\frac{π}{2}$)C.(0,$\frac{π}{2}$)D.(-1,$\frac{π}{2}$)

分析 令g(x)=cosx+xsinx,利用导数判断g(x)在[-π,π]上的单调性和极值,区间端点值,根据零点个数判断m的范围.

解答 解:令f(x)=0得cosx+xsinx=m,
令g(x)=cosx+xsinx,则g′(x)=-sinx+sinx+xcosx=xcosx.
令g′(x)=0得x=0或cosx=0,
∴x=0或x=$\frac{π}{2}$+kπ,k∈Z.
∴g(x)在[-π,π]上随x的变化如下表所示:

 x[-π,-$\frac{π}{2}$)-$\frac{π}{2}$ (-$\frac{π}{2}$,0) 0 (0,$\frac{π}{2}$) $\frac{π}{2}$ ($\frac{π}{2}$,π]
 g′(x)+ 0- 0+ 0-
 g(x) 增函数 极大值 减函数 极小值 增函数 极大值 减函数
∵g(-π)=f(π)=-1,g(-$\frac{π}{2}$)=f($\frac{π}{2}$)=$\frac{π}{2}$,f(0)=1,
∵f(x)有4个零点,
∴1<m<$\frac{π}{2}$.
故选B.

点评 本题考查了导数与函数单调性的关系,零点个数与极值的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,且过点P(0,1).
(Ⅰ)求椭圆C的方程; 
(Ⅱ)过点(1,-1)的直线l与椭圆C交于不同的两点M、N(均异于点P).问直线PM与PN的斜率之和是否是定值,若是,求出这个定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设计一个程序框图求$S=\frac{1}{1×3}+\frac{1}{3×5}+\frac{1}{5×7}+…+\frac{1}{2015×2017}$的值,并写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}中,a7+a9=10,则S15的值是(  )
A.60B.75C.80D.70

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a>0时,函数f(x)=ln2x-ax-b只有一个零点,则当$\frac{2}{a}$$+\frac{1}{{e}^{b}}$取得最小值时a的值是(  )
A.$\sqrt{e}$B.$\frac{2}{e}$C.$\frac{2\sqrt{e}}{e}$D.$\frac{\sqrt{e}}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义域为R的偶函数f(x)满足对任意x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2sin$\frac{π}{2}$x-2,若函数y=f(x)-loga(x+1)在(0,+∞)上至少有三个零点,则实数a的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.($\frac{\sqrt{3}}{3}$,1)C.(0,$\frac{\sqrt{3}}{3}$)D.($\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinωx(ω>0)在[0,$\frac{π}{6}$]上的最大值为$\frac{\sqrt{3}}{2}$,当把f(x)的图象上所有的点向右平移φ个单位,得到函数g(x),且g(x)满足g($\frac{7}{12}$π+x)=g($\frac{7}{12}$π-x),则正数φ的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)在第一象限的一个动点,过点P向两条渐近线作垂线,垂足分别为A、B,若A、B始终在第一或第二象限内,则该双曲线的离心率e的取值范围为($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B.
(Ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e的值;
(Ⅱ)设直线AB与x、y轴分别交于点M,N,问当点P在椭圆上运动时,$\frac{a^2}{{O{N^2}}}$+$\frac{b^2}{{O{M^2}}}$是否为定值?请证明你的结论.

查看答案和解析>>

同步练习册答案