7£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ºÍÔ²O£ºx2+y2=b2£¬¹ýÍÖÔ²ÉÏÒ»µãPÒýÔ²OµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£®
£¨¢ñ£©ÈôÔ²O¹ýÍÖÔ²µÄÁ½¸ö½¹µã£¬ÇóÍÖÔ²µÄÀëÐÄÂÊeµÄÖµ£»
£¨¢ò£©ÉèÖ±ÏßABÓëx¡¢yÖá·Ö±ð½»ÓÚµãM£¬N£¬Îʵ±µãPÔÚÍÖÔ²ÉÏÔ˶¯Ê±£¬$\frac{a^2}{{O{N^2}}}$+$\frac{b^2}{{O{M^2}}}$ÊÇ·ñΪ¶¨Öµ£¿ÇëÖ¤Ã÷ÄãµÄ½áÂÛ£®

·ÖÎö £¨¢ñ£©ÓÉÔ²O¹ýÍÖÔ²µÄ½¹µã£¬Ô²O£ºx2+y2=b2£¬¿ÉµÃb=c£¬ÔÙÀûÓÃb2=a2-c2£¬¼°ÆäÀëÐÄÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
£¨¢ò£©ÉèP£¨x0£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÀûÓÃÇÐÏßµÄÐÔÖʿɵãº$\frac{{y}_{0}-{y}_{1}}{{x}_{0}-{x}_{1}}$=-$\frac{{x}_{1}}{{y}_{1}}$£¬ÕûÀí½ø¶øµÃµ½PA·½³ÌΪ£ºx1x0+y1y0=b2£®Í¬Àí¿ÉµÃ£ºPB·½³ÌΪ£ºx2x0+y2y0=b2£®¿ÉµÃÖ±ÏßABµÄ·½³ÌΪ£ºx0x+y0y=b2£®ÔÙÀûÓÃ${b}^{2}{x}_{0}^{2}$+${a}^{2}{y}_{0}^{2}$=a2b2£®¼´¿ÉµÃ³ö¶¨Öµ£®

½â´ð ½â£º£¨¢ñ£©¡ßÔ²O¹ýÍÖÔ²µÄ½¹µã£¬Ô²O£ºx2+y2=b2£¬¡àb=c£¬
¡àb2=a2-c2£¬a2=2c2£¬¡àe=$\frac{\sqrt{2}}{2}$£®
£¨¢ò£©ÉèP£¨x0£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
Ôò$\frac{{y}_{0}-{y}_{1}}{{x}_{0}-{x}_{1}}$=-$\frac{{x}_{1}}{{y}_{1}}$£¬ÕûÀíµÃx0x1+y0y1=${x}_{1}^{2}$+${y}_{1}^{2}$£®
¡ß${x}_{1}^{2}$+${y}_{1}^{2}$=b2£®¡àPA·½³ÌΪ£ºx1x0+y1y0=b2£®
ͬÀí¿ÉµÃ£ºPB·½³ÌΪ£ºx2x0+y2y0=b2£®
´Ó¶øÖ±ÏßABµÄ·½³ÌΪ£ºx0x+y0y=b2£®
Áîx=0£¬µÃ|ON|=|y|=$\frac{{b}^{2}}{|{y}_{0}|}$£¬Áîy=0£¬µÃ|OM|=|x|=$\frac{{b}^{2}}{|{x}_{0}|}$£®
ÓÖ$\frac{{x}_{0}^{2}}{{a}^{2}}$+$\frac{{y}_{0}^{2}}{{b}^{2}}$=1£¬¼´${b}^{2}{x}_{0}^{2}$+${a}^{2}{y}_{0}^{2}$=a2b2£®
¡à$\frac{a^2}{{O{N^2}}}$+$\frac{b^2}{{O{M^2}}}$=$\frac{{a}^{2}{y}_{0}^{2}+{b}^{2}{x}_{0}^{2}}{{b}^{4}}$=$\frac{{a}^{2}{b}^{2}}{{b}^{4}}$=$\frac{{a}^{2}}{{b}^{2}}$£¬
¡à$\frac{a^2}{{O{N^2}}}$+$\frac{b^2}{{O{M^2}}}$=$\frac{{a}^{2}}{{b}^{2}}$Ϊ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÔ²ÏàÇеÄÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ¡¢µãÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=cosx+xsinx-m£¬x¡Ê[-¦Ð£¬¦Ð]£¬Èôf£¨x£©ÓÐ4¸öÁãµã£¬ÔòmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨-1£¬1£©B£®£¨1£¬$\frac{¦Ð}{2}$£©C£®£¨0£¬$\frac{¦Ð}{2}$£©D£®£¨-1£¬$\frac{¦Ð}{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª¡÷ABCÈý¸öÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ßΪa¡¢b¡¢c£¬acosA-bcosB=0£¬a¡Ùb£®
£¨1£©Çó½ÇC£» 
£¨2£©Èôy=$\frac{sinA+sinB}{sinA•sinB}$£¬ÊÔÈ·¶¨ÊµÊýyµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªA£¬BΪ˫ÇúÏßEµÄ×ó£¬ÓÒ¶¥µã£¬µãMÔÚË«ÇúÏßEÉÏ£¬¡÷ABMΪµÈÑüÈý½ÇÐΣ¬ÆäÖÐÒ»½ÇΪ30¡ã£¬ÔòË«ÇúÏßEµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{5}$B£®2C£®$\sqrt{3}$D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Éèf£¨x£©Îª¶¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬µ±x¡Ý0ʱ£¬f£¨x£©=log2£¨x+1£©+m+1£¬Ôòf£¨-15£©=-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªf£¨$\frac{1}{x}}$£©=$\frac{x}{1+x}$£¬Ôòf¡ä£¨1£©µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®-$\frac{1}{2}$C£®-$\frac{1}{4}$D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÊýÁÐ{an}Âú×㣺an¡Ù0£¬a1=1£¬an-an+1=2anan+1£¨n¡ÊN*£©£®
£¨1£©Çóa2£¬a3£»
£¨2£©ÇóÖ¤£º$\{\frac{1}{a_n}\}$ÊǵȲîÊýÁУ¬²¢Çó³öan£»
£¨3£©Éèbn=anan+1£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£¼$\frac{1}{2}$ºã³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èô$a={{£¨\frac{3}{4}£©}^{x}}$£¬b=x2£¬$c={{log}_{\frac{3}{4}}}x$£¬Ôòµ± x£¾1ʱ£¬a£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©?
A£®c£¼a£¼bB£®c£¼b£¼aC£®a£¼b£¼cD£®a£¼c£¼b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªP£¨x£¬y£©ÊÇÔ²x2+£¨y-3£©2=a2£¨a£¾0£©Éϵ͝µã£¬¶¨µãA£¨2£¬0£©£¬B£¨-2£¬0£©£¬¡÷PABµÄÃæ»ý×î´óֵΪ8£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸