·ÖÎö £¨¢ñ£©ÓÉÔ²O¹ýÍÖÔ²µÄ½¹µã£¬Ô²O£ºx2+y2=b2£¬¿ÉµÃb=c£¬ÔÙÀûÓÃb2=a2-c2£¬¼°ÆäÀëÐÄÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
£¨¢ò£©ÉèP£¨x0£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÀûÓÃÇÐÏßµÄÐÔÖʿɵãº$\frac{{y}_{0}-{y}_{1}}{{x}_{0}-{x}_{1}}$=-$\frac{{x}_{1}}{{y}_{1}}$£¬ÕûÀí½ø¶øµÃµ½PA·½³ÌΪ£ºx1x0+y1y0=b2£®Í¬Àí¿ÉµÃ£ºPB·½³ÌΪ£ºx2x0+y2y0=b2£®¿ÉµÃÖ±ÏßABµÄ·½³ÌΪ£ºx0x+y0y=b2£®ÔÙÀûÓÃ${b}^{2}{x}_{0}^{2}$+${a}^{2}{y}_{0}^{2}$=a2b2£®¼´¿ÉµÃ³ö¶¨Öµ£®
½â´ð ½â£º£¨¢ñ£©¡ßÔ²O¹ýÍÖÔ²µÄ½¹µã£¬Ô²O£ºx2+y2=b2£¬¡àb=c£¬![]()
¡àb2=a2-c2£¬a2=2c2£¬¡àe=$\frac{\sqrt{2}}{2}$£®
£¨¢ò£©ÉèP£¨x0£¬y0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
Ôò$\frac{{y}_{0}-{y}_{1}}{{x}_{0}-{x}_{1}}$=-$\frac{{x}_{1}}{{y}_{1}}$£¬ÕûÀíµÃx0x1+y0y1=${x}_{1}^{2}$+${y}_{1}^{2}$£®
¡ß${x}_{1}^{2}$+${y}_{1}^{2}$=b2£®¡àPA·½³ÌΪ£ºx1x0+y1y0=b2£®
ͬÀí¿ÉµÃ£ºPB·½³ÌΪ£ºx2x0+y2y0=b2£®
´Ó¶øÖ±ÏßABµÄ·½³ÌΪ£ºx0x+y0y=b2£®
Áîx=0£¬µÃ|ON|=|y|=$\frac{{b}^{2}}{|{y}_{0}|}$£¬Áîy=0£¬µÃ|OM|=|x|=$\frac{{b}^{2}}{|{x}_{0}|}$£®
ÓÖ$\frac{{x}_{0}^{2}}{{a}^{2}}$+$\frac{{y}_{0}^{2}}{{b}^{2}}$=1£¬¼´${b}^{2}{x}_{0}^{2}$+${a}^{2}{y}_{0}^{2}$=a2b2£®
¡à$\frac{a^2}{{O{N^2}}}$+$\frac{b^2}{{O{M^2}}}$=$\frac{{a}^{2}{y}_{0}^{2}+{b}^{2}{x}_{0}^{2}}{{b}^{4}}$=$\frac{{a}^{2}{b}^{2}}{{b}^{4}}$=$\frac{{a}^{2}}{{b}^{2}}$£¬
¡à$\frac{a^2}{{O{N^2}}}$+$\frac{b^2}{{O{M^2}}}$=$\frac{{a}^{2}}{{b}^{2}}$Ϊ¶¨Öµ£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÔ²ÏàÇеÄÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ¡¢µãÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-1£¬1£© | B£® | £¨1£¬$\frac{¦Ð}{2}$£© | C£® | £¨0£¬$\frac{¦Ð}{2}$£© | D£® | £¨-1£¬$\frac{¦Ð}{2}$£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{5}$ | B£® | 2 | C£® | $\sqrt{3}$ | D£® | $\sqrt{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | -$\frac{1}{2}$ | C£® | -$\frac{1}{4}$ | D£® | $\frac{1}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | c£¼a£¼b | B£® | c£¼b£¼a | C£® | a£¼b£¼c | D£® | a£¼c£¼b |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com