精英家教网 > 高中数学 > 题目详情
数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项等于(  )
分析:将数列分段,第1段1个数,第2段2个数,…,第n段n个数,设a1000=k,则a1000在第k个数段,由于第k个数段共有k个数,可先求出前k-1组中的所有的项的个数,可求
解答:解:将数列分段,第1段1个数,第2段2个数,…,第n段n个数,
设a1000=k,则a1000在第k个数段,由于第k个数段共有k个数,
则由题意k应满足1+2+…+(k-1)<1000≤1+2+…+k,
解得k=45.
答案:B
点评:本题主要考查了等差数列求和的应用,解题的关键是对所给的数列合理的进行分组.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、数列1,2,2,3,3,3,4,4,4,4,5…的第100项是
14

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

数列1,2,2,3,3,3,4,4,4,4,…的第100项是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)一个数列{1,2,2,3,3,3,4,4,4,4,5,…},它的首项是1,随后两项都是2,接下来3项都是3,再接下来4项都是4,…,依此类推,若an-1=20,an=21,则n=
211
211

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为
7
7

查看答案和解析>>

同步练习册答案