精英家教网 > 高中数学 > 题目详情
已知函数
①当时,求函数在上的最大值和最小值;
②讨论函数的单调性;
③若函数处取得极值,不等式恒成立,求实数的取值范围。
(1)上的最大值是,最小值是
(2)当单调递减,在单调递增,当单调递减
(3)

试题分析:解:(1)当
        1分


      2分


上的最大值是,最小值是。      3分
(2)
时,令
单调递减,在单调递增      5分
恒成立
为减函数                6分
时,恒成立 
单调递减 。          7分
综上,当单调递减,在单调递增,当单调递减      8分
(3),依题意:
          9分
 恒成立。

法(一)上恒成立      10分
    12分

          14分
法(二)由上恒成立。
      10分
        11分
恒成立,无最值


        14分
点评:主要是考查了导数在研究函数中的运用,根据导数的符号判定函数单调性,以及函数的 最值对于恒成立问题分离参数法来得到参数的范围,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(I)求函数的单调区间;
(II)若函数上是减函数,求实数的最小值;
(III)若,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求证:
(2)若实数满足.试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调增区间与值域相同,则实数的取
值为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若的图象恰有两个交点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)求函数的定义域;(6分)
(2)求函数上的值域.(6分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数在R上是增函数,且,则的取值范围是(  )
A.(-B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
①当时,求曲线在点处的切线方程。
②求的单调区间

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
已知函数,其中
求函数的最大值和最小值;
若实数满足:恒成立,求的取值范围。

查看答案和解析>>

同步练习册答案