精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log3x+m(1≤x≤9,m为常数)的图象经过点(1,2),则函数g(x)=[f(x)]2-f(x2)的值域为
[2,5]
[2,5]
分析:先由函数f(x)=log3x+m(1≤x≤9,m为常数)的图象经过点(1,2),求得m,再根据f(x)的定义域为[1,9],求出g(x)的定义域为[1,3],然后利用二次函数的最值再求函数g(x)=[f(x)]2-f(x2)=(2+log3x)2-(2+log3x2)=(log3x+1)2+1的最大值与最小值.
解答:解:∵函数f(x)=log3x+m(1≤x≤9,m为常数)的图象经过点(1,2),
∴log31+m=2,∴m=2,∴f(x)=log3x+2,
由f(x)的定义域为[1,9]可得g(x)的定义域为[1,3],
又g(x)=(2+log3x)2-(2+log3x2)=(log3x+1)2+1,
∵1≤x≤3,∴0≤log3x≤1.
∴当x=1时,g(x)有最小值2;
当x=3时,g(x)有最大值5.
则函数g(x)=[f(x)]2-f(x2)的值域为[2,5].
故答案为:[2,5].
点评:根据f(x)的定义域,先求出g(x)的定义域是正确解题的关键步骤,属于易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案