精英家教网 > 高中数学 > 题目详情
(2013•太原一模)已知函数f(x)=
x3,-1<x≤0
f(x-1)+1,x>0
,若函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为(  )
分析:根据函数的零点的定义,构造两函数图象的交点,交点的横坐标即为函数的零点,再通过数列及通项公式的概念得所求的解.
解答:解:当x∈(-1,0]时,由g(x)=f(x)-x=x3-x=0,可得x=0,故函数g(x)=f(x)-x的零点为 x=0.
当x∈(0,1]时,x-1∈(-1,0],f(x)=f(x-1)+1=(x-1)3+1,
由g(x)=f(x)-x=(x-1)3+1-x=0 求得 x=1,故函数g(x)=f(x)-x的零点为 x=1.
当x∈(1,2]时,x-1∈(0,1],f(x)=f(x-1)+1=(x-2)3+1+1=(x-2)3+2,
由g(x)=f(x)-x=(x-2)3+2-x=0 求得 x=2,故函数g(x)=f(x)-x的零点为 x=2.
以此类推,当x∈(2,3],x∈(3,4],…,x∈(n,n+1]时,函数g(x)对应的零点分别为x=3,x=4,…,x=n+1.
故所有的零点从小到大依次排列为0,1,2,…,n+1.其对应的数列的通项公式为an=n-1.
故选 C.
点评:本题主要考查了函数零点的概念及零点的求法、数列的概念及简单表示;培养学生观察、分析、归纳、推理的能力;
解题中使用了数形结合及分类讨论的数学方法和数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•太原一模)x、y满足约束条件
x+y≥1
x-y≥-1
2x-y≤2
,若目标函数z=ax+by(a>0,b>0)的最大值为7,则
3
a
+
4
b
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线L的参数方程为:
x=-2+
2
2
t
y=-4+
2
2
t
,直线L与曲线C分别交于M,N.
(Ⅰ)写出曲线C和直线L的普通方程;    
(Ⅱ)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)复数
i
1-i
的共轭复数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知向量
a
b
满足|
a
|=1,|
b
|=
2
,(
a
-
b
)⊥
a
,向量
a
b
的夹角为
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知函数f(x)=|2x+1|+|2x-3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的不等式f(x)<|a-1|的解集非空,求实数a的取值范围.

查看答案和解析>>

同步练习册答案