精英家教网 > 高中数学 > 题目详情
如图,已知AB⊥平面ACD,DE∥AB,AC=AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(Ⅰ)取EC中点G,连BG,GF,证明四边形ABGF为平行四边形,可得AF∥BG,利用线面平行的判定定理,即可得出结论;
(Ⅱ)证明BG⊥DE,BG⊥CD,可得BG⊥平面CDE,利用面面垂直的判定定理,即可得出结论
解答: 证明:(Ⅰ)取EC中点G,连BG,GF.
∵F是CD的中点,∴FG∥DE,且FG=
1
2
DE.
又∵AB∥DE,且AB=
1
2
DE.
∴四边形ABGF为平行四边形.
∴AF∥BG.
又BG?平面BCE,AF?平面BCE.
∴AF∥平面BCE.           
(Ⅱ)∵AB⊥平面ACD,AF?平面ACD,
∴AB⊥AF.
∵AB∥DE,∴AF⊥DE.    
又∵△ACD为正三角形,∴AF⊥CD.    
∵BG∥AF,∴BG⊥DE,BG⊥CD.     
∵CD∩DE=D,∴BG⊥平面CDE.    
∵BG?平面BCE,∴平面BCE⊥平面CDE.
点评:本题考查线面平行,面面垂直,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数:f(x)=lg|x|.请解答下列问题:
(1)判断函数f(x)的奇偶性;
(2)作出f(x)的大致图象并写出f(x)的单调递减区间;
(3)解方程:[f(x)]2-3f(x)-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

按照斜二测画法得到,一个平面图形的直观图为腰长为2的等腰直角三角形,则这一平面图形的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过点P(2,-1),则
sinα-cosα
sinα+cosα
=(  )
A、3
B、
1
3
C、-
1
3
D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、函数f(x)=ax+1(a>0,且a≠1)的图象恒过定点(0,1)
B、函数f(x)=x-3在其定义域上是减函数
C、函数f(x)=2 
1
x
值域为(0,+∞)
D、函数f(x)=|log2x|在区间(1,+∞)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1≠0,an+1=
3
an,Sn为{an}的前n项和.记Rn=
82Sn-S2n
an+1
,则数列{Rn}的最大项为第
 
项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a2x-2a+1.若命题“?x∈(0,1),f(x)≠0”是假命题,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-4,0)及圆C:x2+y2+6x-4y+4=0.
(Ⅰ)当直线l过点P且与圆心C的距离为l时,求直线l的方程;
(Ⅱ)设过点P的直线与圆C交于A、B两点,当|AB|取得最小值时,求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,且a1=1,S5=25,则{an}的通项公式an=
 

查看答案和解析>>

同步练习册答案