【题目】关于
的方程
恰有3个实数根
,
,
,则
__________.
【答案】2
【解析】
令f(x)=x2+arcsin(cosx)+a,判断f(x)的奇偶性,由题意可得f(0)=0,求得a,再由反三角函数的定义和性质,化简函数,求得f(x)=0的解,即可得到所求和.
令f(x)=x2+arcsin(cosx)+a,
可得f(﹣x)=(﹣x)2+arcsin(cos(﹣x))+a=f(x),
则f(x)为偶函数,
∵f(x)=0有三个实数根,
∴f(0)=0,即0
a=0,故有a
,
关于x的方程即x2+arcsin(cosx)
0,
可设
=0,
且
2+arcsin(cos
)
0,
2+arcsin(cos
)
0,
=﹣
,
由y=x2和y
arcsin(cosx),
当x>0,且0<x<π时,y
arcsin(cosx)
arcsin(sin(
x))
(
x))=x,
则﹣π<x<0时,y
arcsin(cosx)=﹣x,
由y=x2和y
arcsin(cosx)的图象可得:
它们有三个交点,且为(0,0),(﹣1,1),(1,1),
则
2+
2+
2=0+1+1=2.
故答案为:2.
![]()
科目:高中数学 来源: 题型:
【题目】如上图所示,在正方体
中,
分别是棱
的中点,
的顶点
在棱
与棱
上运动,有以下四个命题:
![]()
A.平面
; B.平面
⊥平面
;
C.
在底面
上的射影图形的面积为定值;
D.
在侧面
上的射影图形是三角形.其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在
轴上,离心率为
,且过点P
。
(1)求椭圆的标准方程;
(2)已知斜率为1的直线l过椭圆的右焦点F交椭圆于A.B两点,求弦AB的长。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知菱形
与直角梯形
所在的平面互相垂直,其中
,
,
,
,
为
的中点
(Ⅰ)求证:
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)设
为线段
上一点,
,若直线
与平面
所成角的正弦值为
,求
的长.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左焦点在抛物线
的准线上,且椭圆的短轴长为2,
分别为椭圆的左,右焦点,
分别为椭圆的左,右顶点,设点
在第一象限,且
轴,连接
交椭圆于点
,直线
的斜率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若三角形
的面积等于四边形
的面积,求
的值;
(Ⅲ)设点
为
的中点,射线
(
为原点)与椭圆交于点
,满足
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
在平行于
轴的直线
上,且
与
轴的交点为
,动点
满足
平行于
轴,且
.
(1)求出
点的轨迹方程.
(2)设点
,
,求
的最小值,并写出此时
点的坐标.
(3)过点
的直线与
点的轨迹交于
.
两点,求证
.
两点的横坐标乘积为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com