精英家教网 > 高中数学 > 题目详情

已知圆过点,且圆心在直线上。
(I)求圆的方程;
(II)问是否存在满足以下两个条件的直线: ①斜率为;②直线被圆截得的弦为,以为直径的圆过原点. 若存在这样的直线,请求出其方程;若不存在,说明理由.

(I)(II)存在,

解析试题分析:(I)用待定系数法求圆的方程,即先设出圆的标准式方程或一般式方程,然后根据已知条件列出方程组求出未知系数即可。(II)假设直线存在,其方程为,与圆的方程联立 消去得到关于的一元二次方程,由韦达定理得到根与系数间的关系,因直线与圆由两个交点故此一元二次方程的判别式应大于0。以为直径的圆过原点即,可转化为直线垂直斜率乘积等于,也可转化为,还可转化为直角三角形勾股定理即,得到。即可得到关于的方程,若方程有解则假设成立,否则假设不成立。
试题解析:解:(1)设圆C的方程为
解得D= 6,E=4,F=4
所以圆C方程为                  5分
(2)设直线存在,其方程为,它与圆C的交点设为A、B
则由(*)
                               7分
=因为AB为直径,所以,

,                                    9分

,∴       11分
容易验证时方程(*)有实根.
故存在这样的直线有两条,其方程是.           12分
考点:圆的方程,直线和圆的位置关系,考查分析问题、解决问题的能力。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆O1的方程为x2+(y+1)2=6,圆O2的圆心坐标为(2,1).若两圆相交于A,B两点,且|AB|=4,求圆O2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆Cx2y2x-6ym=0与直线lx+2y-3=0.
(1)若直线l与圆C没有公共点,求m的取值范围;
(2)若直线l与圆C相交于PQ两点,O为原点,且OPOQ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的三个顶点,其外接圆为
(1)若直线过点,且被截得的弦长为2,求直线的方程;
(2)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点M(3,1),直线与圆
(1)求过点M的圆的切线方程;
(2)若直线与圆相切,求a的值;
(3)若直线与圆相交与A,B两点,且弦AB的长为,求a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆O与离心率为的椭圆T:)相切于点M

⑴求椭圆T与圆O的方程;
⑵过点M引两条互相垂直的两直线与两曲线分别交于点A、C与点B、D(均不重合)。
①若P为椭圆上任一点,记点P到两直线的距离分别为,求的最大值;
②若,求的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3:1;③圆心到直线的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求圆心在直线3x+y-5=0上,并且经过原点和点(4,0)的圆的方程

查看答案和解析>>

同步练习册答案