精英家教网 > 高中数学 > 题目详情

已知的三个顶点,其外接圆为
(1)若直线过点,且被截得的弦长为2,求直线的方程;
(2)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求的半径的取值范围.

(1);(2).

解析试题分析:(1)求的外接圆方程可用待定系数法或利用两边垂直平分线的交点先求出圆心,再利用两点之间距离公式求出半径,求出圆的方程后再利用待定系数法求出直线的方程,此时要注意分直线斜率存在和不存在两种情况讨论;(2)可设出点的坐标,再把点的坐标用其表示,把点的坐标代入圆的方程,利用方程组恒有解去考察半径的取值范围,但要注意三点不能重合,即圆和线段无公共点.
试题解析:(1)线段的垂直平分线方程为,线段的垂直平分线方程为,所以外接圆圆心,半径的方程为.      4分
设圆心到直线的距离为,因为直线截得的弦长为2,所以
当直线垂直于轴时,显然符合题意,即为所求;          6分
当直线不垂直于轴时,设直线方程为,则,解得
综上,直线的方程为.                8分
(2) 直线的方程为,设
因为点是点的中点,所以,又都在半径为上,
所以     10分
因为该关于的方程组有解,即以为圆心为半径的圆与以为圆心为半径的圆有公共点,所以,  12分
,所以]成立.
在[0,1]上的值域为[,10],故. 15分
又线段与圆无公共点,所以成立,即.故的半径的取值范围为.             16分
考点:圆的方程,直线与圆的位置关系,圆与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆.
(1)已知不过原点的直线与圆相切,且在轴,轴上的截距相等,求直线的方程;
(2)求经过原点且被圆截得的线段长为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆.
(1)若直线过点,且与圆相切,求直线的方程;
(2)若圆的半径为4,圆心在直线上,且与圆内切,求圆 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆方程.
(1)若圆与直线相交于M,N两点,且为坐标原点)求的值;
(2)在(1)的条件下,求以为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,设点B,C是直线上的两点,它们的横坐标分别是,点P在线段BC上,过P点作圆M的切线PA,切点为A
(1)若,求直线的方程;
(2)经过三点的圆的圆心是,求线段(为坐标原点)长的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x-4y+7=0相切,且被轴截得的弦长为,圆C的面积小于13.
(Ⅰ)求圆C的标准方程;
(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆过点,且圆心在直线上。
(I)求圆的方程;
(II)问是否存在满足以下两个条件的直线: ①斜率为;②直线被圆截得的弦为,以为直径的圆过原点. 若存在这样的直线,请求出其方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点和圆

(Ⅰ)过点的直线被圆所截得的弦长为,求直线的方程;
(Ⅱ)若的面积,且是圆内部第一、二象限的整点(平面内横、纵坐标均为整数
的点称为整点),求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆和点(1)若过点有且只有一条直线与圆相切,求正实数的值,并求出切线方程;(2)若,过点的圆的两条弦互相垂直,设分别为圆心到弦的距离.
(Ⅰ)求的值;
(Ⅱ)求两弦长之积的最大值.

查看答案和解析>>

同步练习册答案