精英家教网 > 高中数学 > 题目详情
10.设a,b,c为非零实数,则x=$\frac{|ab|}{ab}$+$\frac{bc}{|bc|}$+$\frac{|ac|}{ac}$+$\frac{abc}{|abc|}$的值的集合为{0,-4,4}.

分析 分a、b、c是大于0还是小于0,去掉代数式中的绝对值,化简即得结果.

解答 解:∵a、b、c为非零实数,
∴当a>0、b>0、c>0时,x=$\frac{|ab|}{ab}$+$\frac{bc}{|bc|}$+$\frac{|ac|}{ac}$+$\frac{abc}{|abc|}$=1+1+1+1=4;
当a、b、c中有一个小于0时,不妨设a<0、b>0、c>0,
∴x=$\frac{|ab|}{ab}$+$\frac{bc}{|bc|}$+$\frac{|ac|}{ac}$+$\frac{abc}{|abc|}$=-1+1-1+1=0;
当a、b、c中有两个小于0时,不妨设a<0、b<0、c>0,
∴x=$\frac{|ab|}{ab}$+$\frac{bc}{|bc|}$+$\frac{|ac|}{ac}$+$\frac{abc}{|abc|}$=1-1-1+1=0;
当a<0、b<0、c<0时,x=$\frac{|ab|}{ab}$+$\frac{bc}{|bc|}$+$\frac{|ac|}{ac}$+$\frac{abc}{|abc|}$=1-1-1-1=-4;
∴x的所有值组成的集合为{0,-4,4}.
故答案为:{0,-4,4}.

点评 本题考查了含有绝对值的代数式计算问题,关键是去掉绝对值,化简即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.求经过点P(2,-1),且y轴上的截距等于它的x轴上的截距的2倍的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.分解因式:2x(x-y)4-x2(x-y)2+xy(y-x)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{4}{x},x∈[-8,-4)}\\{-9-x,x∈[-4,1)}\\{x-\frac{8}{x}-3,x∈[1,8]}\end{array}\right.$.
(1)求f(x)的值域
(2)设函数g(x)=ax+5,x∈[-8,8],若对任意的x1∈[-8,8],总存在x0∈[-8,8],使得g(x0)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若A={x|x∈N|x<2},可用列举法将集合{(x,y)|x∈A,y∈A}表示为(  )
A.{(0,1)}B.{0,1}C.{(1,1),(1,2),(2,1),(2,2)}D.{(0,0),(0,1),(1,0),(1,1)}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知A={-3,2},B={x|mx+1=0},B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.cos24°cos36°-cos66°sin144°的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.判断下列函数是否具有奇偶性:
(1)f(x)=x+x3+x5
(2)h(x)=x3+1;
(3)f(x)=x2,x∈[-1,3];
(4)f(x)=(x+1)(x-1);
(5)g(x)=x(x+1);
(6)k(x)=$\frac{1}{{x}^{2}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=x2-2|x|-1(-3≤x≤5)
(1)讨论函数的奇偶数;
(2)讨论函数的单调性;
(3)x为何值时,f(x)>0;
(4)求函数的最大值和最小值;
(5)画出函数的图象.

查看答案和解析>>

同步练习册答案