18£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{x+\frac{4}{x}£¬x¡Ê[-8£¬-4£©}\\{-9-x£¬x¡Ê[-4£¬1£©}\\{x-\frac{8}{x}-3£¬x¡Ê[1£¬8]}\end{array}\right.$£®
£¨1£©Çóf£¨x£©µÄÖµÓò
£¨2£©É躯Êýg£¨x£©=ax+5£¬x¡Ê[-8£¬8]£¬Èô¶ÔÈÎÒâµÄx1¡Ê[-8£¬8]£¬×Ü´æÔÚx0¡Ê[-8£¬8]£¬Ê¹µÃg£¨x0£©=f£¨x1£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©·ÖÎöº¯ÊýµÄµ¥µ÷ÐÔ£¬½ø¶øÖð¶ÎÇó³ö¸÷¶ÎµÄÖµÓò£¬×îºó×ۺϷֶÎÌÖÂ۵Ľá¹û£¬¿ÉµÃf£¨x£©µÄÖµÓòA£»
£¨2£©Çó³öº¯Êýg£¨x£©=ax+5£¬x¡Ê[-8£¬8]µÄÖµÓòB£¬½áºÏÌâÒ⣬½«Æä»¯ÎªA⊆B£¬¿ÉµÃʵÊýaµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©µ±x¡Ê[-8£¬-4£©Ê±£¬º¯Êýf£¨x£©=x+$\frac{4}{x}$ΪÔöº¯Êý£¬´Ëʱf£¨x£©¡Ê[$-\frac{17}{2}$£¬-5£©£¬
µ±x¡Ê[-4£¬1£©Ê±£¬º¯Êýf£¨x£©=-9-xΪ¼õº¯Êý£¬´Ëʱf£¨x£©¡Ê£¨-10£¬-5]£¬
µ±x¡Ê[1£¬8]ʱ£¬º¯Êýf£¨x£©=x-$\frac{8}{x}$-3Ϊ¼õº¯Êý£¬´Ëʱf£¨x£©¡Ê[-10£¬4]£¬
×ÛÉÏf£¨x£©µÄÖµÓòA=[-10£¬4]£¬
£¨2£©É躯Êýg£¨x£©=ax+5£¬x¡Ê[-8£¬8]µÄÖµÓòB£¬
Èô¶ÔÈÎÒâµÄx1¡Ê[-8£¬8]£¬×Ü´æÔÚx0¡Ê[-8£¬8]£¬Ê¹µÃg£¨x0£©=f£¨x1£©³ÉÁ¢£¬
ÔòA⊆B£¬
ÏÔÈ»a=0ʱ£¬²»Âú×ãÌâÒ⣬
µ±a£¾0ʱ£¬º¯Êýg£¨x£©=ax+5£¬x¡Ê[-8£¬8]ΪÔöº¯Êý£¬B=[-8a+5£¬8a+5]£¬
Ôò$\left\{\begin{array}{l}-8a+5¡Ü-10\\ 8a+5¡Ý4\\ a£¾0\end{array}\right.$£¬½âµÃ£ºa¡Ý$\frac{15}{8}$£¬
µ±a£¾0ʱ£¬º¯Êýg£¨x£©=ax+5£¬x¡Ê[-8£¬8]Ϊ¼õº¯Êý£¬B=[8a+5£¬-8a+5]£¬
Ôò$\left\{\begin{array}{l}8a+5¡Ü-10\\-8a+5¡Ý4\\ a£¼0\end{array}\right.$£¬½âµÃ£ºa¡Ü-$\frac{15}{8}$£¬
×ÛÉÏËùÊö£¬ÊµÊýaµÄȡֵ·¶Î§Îªa¡Ü-$\frac{15}{8}$£¬»òa¡Ý$\frac{15}{8}$£®

µãÆÀ ±¾Ì⿼²éÁ˺¯Êýµ¥µ÷ÐÔµÄÅжÏÓëÖ¤Ã÷£¬º¯Êý×îÖµµÃÓ¦Óã®×¢ÒâÒ»°ãµ¥µ÷ÐÔµÄÖ¤Ã÷Ñ¡Óö¨Òå·¨Ö¤Ã÷£¬Ö¤Ã÷µÄ²½ÖèÊÇ£ºÉèÖµ£¬×÷²î£¬»¯¼ò£¬¶¨ºÅ£¬Ï½áÂÛ£®¶ÔÓÚº¯ÊýµÄÖµÓòµÄÇó½â£¬Òª×¢Ò⿼ÂǶ¨ÒåÓòµÄȡֵ£¬ÔÙ¸ù¾Ýº¯ÊýµÄ½âÎöʽ½øÐÐÅжϸÃʹÓúÎÖÖ·½·¨Çó½âÖµÓò£¬±¾ÌâÑ¡ÓÃÁËÀûÓú¯ÊýµÄµ¥µ÷ÐÔÇó½âº¯ÊýµÄÖµÓò£®ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¼ÆË㣺
£¨1£©log3$\frac{4\sqrt{27}}{3}$log5[4${\;}^{\frac{1}{2}lo{g}_{2}10}$-£¨3$\sqrt{3}$£©${\;}^{\frac{2}{3}}$-7${\;}^{lo{g}_{7}2}$]
£¨2£©£¨log32+log92£©£¨log43+log83£©£»
£¨3£©$\frac{1}{5}$£¨lg32+log416+6lg$\frac{1}{2}$£©+$\frac{1}{5}$lg$\frac{1}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èô´æÔÚʵÊý¦È£¬Ê¹µÃ2x2-4xsin¦È+3cos¦È=0³ÉÁ¢£¬ÔòxµÄȡֵ·¶Î§Îª[-$\frac{3\sqrt{2}}{2}$£¬$\frac{3\sqrt{2}}{2}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÓÐÒÔÏÂËĸö˵·¨£º
¢ÙÔÚ¡÷ABCÖУ¬ÈôsinA=cosB£¬Ôò¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ»
¢ÚÔÚ¡÷ABCÖУ¬Èô¡ÏA£¾¡ÏB£¬ÔòsinA£¾sinB£»
¢ÛÈôʵÊýx£¬yÂú×ãx2+y2=1£¬ÇÒS=x+2y£¬ÔòSµÄȡֵ·¶Î§ÊÇ[-$\sqrt{5}$£¬$\sqrt{5}$]£»
¢ÜÈôʵÊýx£¬yÂú×ãx2-xy+2y2=1£¬ÇÒS=x2+2y2£¬ÔòSµÄȡֵ·¶Î§ÊÇ[$\frac{8-2\sqrt{2}}{7}$£¬$\frac{8+2\sqrt{2}}{7}$]£®
ÆäÖÐÕýÈ·µÄ˵·¨ÓТڢۢܣ®£¨°ÑÄãÈÏΪÕýÈ·µÄ¶¼ÌîÔÚºáÏßÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èôº¯Êýy=f£¨x£©ÊǺ¯Êýy=ax£¨a£¾0£¬ÇÒa¡Ù1£©µÄ·´º¯Êý£¬ÇÒf£¨2£©=1£¬Ôòf£¨x£©µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{{2}^{x}}$B£®2x-2C£®log${\;}_{\frac{1}{2}}$xD£®log2x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®¼¯ºÏA⊆{0£¬1£¬2£¬3}£¬ÇÒAÖеÄÔªËØÖÁÉÙÓÐÒ»¸öÆæÊý£¬ÕâÑùµÄ¼¯ºÏÓÐ12¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Éèa£¬b£¬cΪ·ÇÁãʵÊý£¬Ôòx=$\frac{|ab|}{ab}$+$\frac{bc}{|bc|}$+$\frac{|ac|}{ac}$+$\frac{abc}{|abc|}$µÄÖµµÄ¼¯ºÏΪ{0£¬-4£¬4}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ºÍÔ²£¨x-3£©2+£¨y-1£©2=36¹ØÓÚÖ±Ïßx+y=0¶Ô³ÆµÄÔ²µÄ·½³ÌÊÇ£¨¡¡¡¡£©
A£®£¨x+1£©2+£¨y+3£©2=36B£®£¨x+1£©2+£¨y+3£©2=12C£®£¨x-1£©2+£¨y+3£©2=36D£®£¨x-1£©2+£¨y-3£©2=12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®¼×£¬ÒÒÁ½ÈËÏÂÆå£¬¼×»ñʤµÄ¸ÅÂÊÊÇ60%£¬¼×²»ÊäµÄ¸ÅÂÊÊÇ80%£¬¼×¡¢ÒÒºÍÆåµÄ¸ÅÂÊÊÇ20%£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸