【题目】如图,已知三棱锥
中,平面
平面ABC,
,
,BD=3,AD=1,AC=BC,M为线段AB的中点.
(Ⅰ)求证:
平面ACD;
(Ⅱ)求异面直线MD与BC所成角的余弦值;
(Ⅲ)求直线MD与平面ACD所成角的余弦值.
![]()
【答案】(Ⅰ)详见解析;(Ⅱ)
;(Ⅲ)
.
【解析】
(Ⅰ)由题意结合几何关系可得
,结合
,和线面垂直的判定定理即可证得题中的结论;
(Ⅱ)取AC中点N,连接MN,DN,易知
(或其补角)为异面直线MD与BC所成的角,据此结合几何性质可得异面直线MD与BC所成角的余弦值.
(Ⅲ)结合(Ⅱ)可知
为直线MD与平面ACD所成的角,据此可得线面角的余弦值.
(Ⅰ)∵平面
平面ABC于AB,
,
平面ABD,
∴
平面ABC,
∴
,又
,
,
∴
平面ACD.
![]()
(Ⅱ)取AC中点N,连接MN,DN,
∵M是AB中点,
∴
,
∴
(或其补角)为异面直线MD与BC所成的角,
由(Ⅰ)知
平面ACD,
∴
平面ACD,
,
在
中,
,
,
∴
,
即异面直线MD与BC所成角的余弦值为
.
(Ⅲ)由(Ⅱ)
为直线MD与平面ACD所成的角,在
中,
,
∴
.
科目:高中数学 来源: 题型:
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:
)
![]()
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一栋6层楼房里,每个房间的门牌号均为三位数,首位代表楼层号,后两位代表房间号,如218表示的是第2层第18号房间,现已知有宝箱藏在如下图18个房间里的某一间,其中甲同学只知道楼层号,乙同学只知道房间号,不知道楼层号,现有以下甲乙两人的一段对话:
![]()
甲同学说:我不知道,你肯定也不知道;
乙同学说:本来我也不知道,但是现在我知道了;
甲同学说:我也知道了.
根据上述对话,假设甲乙都能做出正确的推断,则藏有宝箱的房间的门牌号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0),四点P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图已知椭圆
,
是长轴的一个端点,弦
过椭圆的中心
,且
,
.
![]()
(Ⅰ)求椭圆的方程:
(Ⅱ)设
为椭圆上异于
且不重合的两点,且
的平分线总是垂直于
轴,是否存在实数
,使得
,若存在,请求出
的最大值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线
不与坐标轴垂直,且与抛物线
有且只有一个公共点
.
![]()
(1)当点
的坐标为
时,求直线
的方程;
(2)设直线
与
轴的交点为
,过点
且与直线
垂直的直线
交抛物线
于
,
两点.当
时,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
且
,设命题
函数
在R上单调递减,命题
对任意实数x,不等式
恒成立.
(1)求非q为真时,实数c的取值范围;
(2)如果命题
为真命题,且
为假命题,求实数c的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com