【题目】如图,直线不与坐标轴垂直,且与抛物线有且只有一个公共点.
(1)当点的坐标为时,求直线的方程;
(2)设直线与轴的交点为,过点且与直线垂直的直线交抛物线于,两点.当时,求点的坐标.
科目:高中数学 来源: 题型:
【题目】设,,表示三条不同的直线,,,表示三个不同的平面,给出下列四个结论:
①若,,,则;
②若,是在内的射影,,则;
③若是平面的一条斜线,,为过的一条动直线,则可能有且;
④若,,则.
其中正确的个数为( )个.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知点为抛物线的焦点,点在抛物线上,且.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小王投资1万元2万元、3万元获得的收益分别是4万元、9万元、16万元为了预测投资资金x(万元)与收益y万元)之间的关系,小王选择了甲模型和乙模型.
(1)根据小王选择的甲、乙两个模型,求实数a,b,c,p,q,r的值
(2)若小王投资4万元,获得收益是25.2万元,请问选择哪个模型较好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线,为的焦点,为准线,且与轴的交点为.过点任意作一条直线交抛物线于两点.
(1)若 ,求证:;
(2)设为线段的中点,为奇质数,且点到轴的距离和点到准线的距离均为非零整数.求证:点到坐标原点的距离不可能是整数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区名居民参加年国庆活动,他们的年龄在岁至岁之间,将年龄按、、、、分组,得到的频率分布直方图如图所示.
(1)求的值,并求该社区参加年国庆活动的居民的平均年龄(每个分组取中间值作代表);
(2)现从年龄在、的人员中按分层抽样的方法抽取人,再从这人中随机抽取人进行座谈,用表示参与座谈的居民的年龄在的人数,求的分布列和数学期望;
(3)若用样本的频率代替概率,用随机抽样的方法从该地岁至岁之间的市民中抽取名进行调查,其中有名市民的年龄在的概率为,当最大时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )
A. B. C. D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com