精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线的焦点,为准线,且轴的交点为.过点任意作一条直线交抛物线两点.

(1)若 ,求证:;

(2)设为线段的中点,为奇质数,且点轴的距离和点到准线的距离均为非零整数.求证:点到坐标原点的距离不可能是整数.

【答案】(1)见解析;(2)见解析

【解析】

(1)点的坐标为,设过点的直线方程为.代入,得

,则是方程①的两个根,有.

,得.

因为

,所以

.

.

(2)设.依题意均为非零整数.

由对称性,不妨设,则. ②

因为点在线段上,所以

. ③

由式②、③消去,得

假设为正整数,则

因为为奇质数,由式④知,,从而.

于是,由式⑤知.

,则

.

消去,得,即

.

有相同的奇偶性,且,所以,

解得.

从而,.于是,,这与为正整数矛盾.

故点到坐标原点的距离不可能是整数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|ax2+2x+1=0aR}

1)若A只有一个元素,试求a的值,并求出这个元素;

2)若A是空集,求a的取值范围;

3)若A中至多有一个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计,某5家鲜花店今年4月的销售额和利润额资料如下表:

鲜花店名称

A

B

C

D

E

销售额x(千元)

3

5

6

7

9

利润额y(千元)

2

3

3

4

5

1)用最小二乘法计算利润额y关于销售额x的回归直线方程=x+

2)如果某家鲜花店的销售额为8千元时,利用(1)的结论估计这家鲜花店的利润额是多少.

参考公式:回归方程中斜率和截距的最小二乘法估计值公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为6.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线 与椭圆交于两点,点(0,1),且=,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线不与坐标轴垂直,且与抛物线有且只有一个公共点.

1)当点的坐标为时,求直线的方程;

2)设直线轴的交点为,过点且与直线垂直的直线交抛物线两点.时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量(万只)与时间(年)(其中的关系为.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值其中为常数,且)来进行生态环境分析.

(1)当时,求比值取最小值时的值;

(2)经过调查,环保部门发现:当比值不超过时不需要进行环境防护.为确保恰好3年不需要进行保护,求实数的取值范围.为自然对数的底

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中常数

(1)当时,讨论的单调性

(2)当时,是否存在整数使得关于的不等式在区间内有解?若存在,求出整数的最小值;若不存在,请说明理由.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

(2)若圆与直线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一汽车厂生产三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.

轿车

轿车

轿车

舒适型

100

150

标准型

300

450

600

1)求的值;

2)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;

3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2 把这8辆轿车的得分看作一个总体,从中任取一个得分数记这8辆轿车的得分的平均数为,定义事件,且函数没有零点,求事件发生的概率.

查看答案和解析>>

同步练习册答案