【题目】如图,已知抛物线
,
为
的焦点,
为准线,且
与
轴的交点为
.过点
任意作一条直线交抛物线
于
两点.
![]()
(1)若
,求证:
;
(2)设
为线段
的中点,
为奇质数,且点
到
轴的距离和点
到准线
的距离均为非零整数.求证:点
到坐标原点
的距离不可能是整数.
科目:高中数学 来源: 题型:
【题目】已知集合A={x|ax2+2x+1=0,a∈R},
(1)若A只有一个元素,试求a的值,并求出这个元素;
(2)若A是空集,求a的取值范围;
(3)若A中至多有一个元素,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据统计,某5家鲜花店今年4月的销售额和利润额资料如下表:
鲜花店名称 | A | B | C | D | E |
销售额x(千元) | 3 | 5 | 6 | 7 | 9 |
利润额y(千元) | 2 | 3 | 3 | 4 | 5 |
(1)用最小二乘法计算利润额y关于销售额x的回归直线方程
=
x+
;
(2)如果某家鲜花店的销售额为8千元时,利用(1)的结论估计这家鲜花店的利润额是多少.
参考公式:回归方程
中斜率和截距的最小二乘法估计值公式分别为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的焦距为
,椭圆
上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
交于
两点,点
(0,1),且
=
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线
不与坐标轴垂直,且与抛物线
有且只有一个公共点
.
![]()
(1)当点
的坐标为
时,求直线
的方程;
(2)设直线
与
轴的交点为
,过点
且与直线
垂直的直线
交抛物线
于
,
两点.当
时,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地环保部门跟踪调查一种有害昆虫的数量.根据调查数据,该昆虫的数量
(万只)与时间
(年)(其中
)的关系为
.为有效控制有害昆虫数量、保护生态环境,环保部门通过实时监控比值
(其中
为常数,且
)来进行生态环境分析.
(1)当
时,求比值
取最小值时
的值;
(2)经过调查,环保部门发现:当比值
不超过
时不需要进行环境防护.为确保恰好3年不需要进行保护,求实数
的取值范围.(
为自然对数的底,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中常数![]()
(1)当
时,讨论
的单调性
(2)当
时,是否存在整数
使得关于
的不等式
在区间
内有解?若存在,求出整数
的最小值;若不存在,请说明理由.
参考数据:
,
,
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一汽车厂生产
,
,
三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有
类轿车10辆.
轿车 | 轿车 | 轿车 | |
舒适型 | 100 | 150 |
|
标准型 | 300 | 450 | 600 |
(1)求
的值;
(2)用分层抽样的方法在
类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从
类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2 把这8辆轿车的得分看作一个总体,从中任取一个得分数
,记这8辆轿车的得分的平均数为
,定义事件
,且函数
没有零点
,求事件
发生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com