精英家教网 > 高中数学 > 题目详情
6.将函数f(x)=sin(2x-$\frac{π}{3}$)的图象上各点的横坐标压缩到原来的$\frac{1}{2}$,再将图象向左平移$\frac{π}{3}$个单位,那么所得到的图象的解析表达式为(  )
A.y=sin(4x+$\frac{π}{3}$)B.y=sin(x-$\frac{2π}{3}$)C.y=sin4xD.y=-sin4x

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律、诱导公式,可得结论.

解答 解:将函数f(x)=sin(2x-$\frac{π}{3}$)的图象上各点的横坐标压缩到原来的$\frac{1}{2}$,可得y=sin(4x-$\frac{π}{3}$)的图象;
再将图象向左平移$\frac{π}{3}$个单位,那么所得到的图象的解析表达式y=sin[4(x+$\frac{π}{3}$)-$\frac{π}{3}$]=sin(4x+π)=-sin4x,
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{m}$=(sinB,1-cosB),$\overrightarrow{n}$=(2,0)且$\overrightarrow{m},\overrightarrow{n}$的夹角是$\frac{π}{3}$,其中A,B,C是△ABC的内角,它们所对的边分别为a,b,c.
(1)求角B的大小;
(2)若b=2,求△ABC的周长取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2$\sqrt{2}$,PD=2.
 (1)证明:PA∥平面BDE;
(2)证明:AC⊥PB;
(3)求三棱锥E-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
 积极参加班级工作不太主动参加班级工作合计
学习积极性高  25
学习积极性一般  25
合计242650
其中:“积极参加班级工作且学习积极性高的学生”的频率为0.36.
(1)补全表中数据,并求“不太主动参加班级的学生”的频率;
(2)试运用独立性检验的思想方法分析:能否在犯错误概率不超过0.001的前提下认为,学生的学习积极性与对待班级工作的态度有关系?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(其中n=a+b+c+d)
临界值表:
P(K2≥K00.500.400.250.150.100.050.0250.0100.0050.001
K00.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.则假设的内容是(  )
A.a,b都能被5整除B.a,b有1个不能被5整除
C.a不能被5整除D.a,b都不能被5整除

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow a$=(2,-3),$\overrightarrow b$=(-5,8),则($\overrightarrow a$+$\overrightarrow b$)•$\overrightarrow b$等于(  )
A.-34B.34C.55D.-55

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列向量的运算中,正确的是(  )
A.$\overrightarrow{AB}+\overrightarrow{BA}=2\overrightarrow{AB}$B.$\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{CA}$C.$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CB}$D.$\overrightarrow{AB}-\overrightarrow{AD}-\overrightarrow{DC}=\overrightarrow{BC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{2}(x≤0)}\\{f(x-2)+2(x>0)}\end{array}\right.$,把方程f(x)-x=0的实数解按从小到大的顺序排列成一个数列$\left\{{a_n}\right\}(n∈{N^*})$,设$h(x)=x+{log_2}\frac{2+x}{8-x}$,则数列{h(an)}的各项之和为(  )
A.36B.33C.30D.27

查看答案和解析>>

同步练习册答案