| A. | $\frac{a}{3}$ | B. | $\frac{a}{4}$ | C. | $\frac{a}{5}$ | D. | $\frac{a}{6}$ |
分析 由于在边长为a的正方形铁片的四角截去四个边长为x的小正方形,做成一个无盖方盒,所以无盖方盒的底面是正方形,且边长为a-2x,高为x,从而写出函数表达式;求导V′(x)=12x2-8ax+a2=(6x-a)(2x-a),由导数可得在x=$\frac{a}{6}$时函数V(x)有最大值.
解答 解:由于在边长为a的正方形铁片的四角截去四个边长为x的小正方形,做成一个无盖方盒,
所以无盖方盒的底面是正方形,且边长为a-2x,高为x,
则无盖方盒的容积V(x)=(a-2x)2x,0<x<$\frac{a}{2}$;
即V(x)=(a-2x)2x=4x3-4ax2+a2x,0<x<$\frac{a}{2}$;
V′(x)=12x2-8ax+a2=(6x-a)(2x-a),
∴当x∈(0,$\frac{a}{6}$)时,V′(x)>0;
当x∈($\frac{a}{6}$,$\frac{a}{2}$)时,V′(x)<0;
故x=$\frac{a}{6}$是函数V(x)的最大值点,
即当x=$\frac{a}{6}$时,方盒的容积V最大.
故选:D.
点评 本题考查了学生将实际问题转化为数学问题的能力及导数在求最值时的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | l?α,m?α且l∥β,m∥β | B. | l?α,m?β且l∥m | ||
| C. | l⊥α,m⊥β且l∥m | D. | l∥α,m∥β且l∥m |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com