精英家教网 > 高中数学 > 题目详情
设函数f(x)=
1-x2,x≤1
x2+x-2,x>1
f(
1
f(2)
)
的值为
 
分析:本题是分段函数求值,规律是先内而外逐层求值,先求f(2)值,再根据
1
f(2)
的取值范围判断应该用那一段上的函数解析式,代入求值即为f(
1
f(2)
)
的值.
解答:解:由于2>1,故f(2)=22+2-2=4
 故
1
f(2)
=
1
4
≤1
f(
1
f(2)
)
=1-(
1
4
) 2
=
15
16

故答案为
15
16
点评:本题考点是求函数的值,本题是一个分段复合型函数,此类题易出错,错因在解析式选用不当.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=|1-
1x
|(x>0),证明:当0<a<b,且f(a)=f(b)时,ab>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-
1-x
x
(x<0)
a+x2(x≥0)
,要使f(x)在(-∞,+∞)内连续,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1             (x≤
3
)
4-x2
(
3
<x<2)
0              (x≥2)
,则
2010
-1
f(x)dx的值为
π
3
+
2+
3
2
π
3
+
2+
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-|x-1|,x<2
1
2
f(x-2),x≥2
,则函数F(x)=xf(x)-1的零点的个数为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1,x>0
0,x=0
-1,x<0
,g(x)=x2f(x-1),则函数g(x)的递减区间是(  )

查看答案和解析>>

同步练习册答案