精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2,点B(0,
3
)为短轴的一个端点,∠OF2B=60°.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,过右焦点F2,且斜率为k(k≠0)的直线l与椭圆C相交于E、F两点,A为椭圆的右顶点,直线AE、AF分别交直线x=3于点M、N,线段MN的中点为P,记直线PF2的斜率为k′.求证:k•k′为定值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由已知条件推导出b=
3
,a=
3
sin60°
=2,由此能求出椭圆方程.
(Ⅱ)设过点F2(1,0)的直线l方程为:y=k(x-1),由
y=k(x-1)
x2
4
+
y2
3
=1
,得:(4k2+3)x2-8k2x+4k2-12=0,由已知条件利用韦达定理推导出直线PF2 的斜率k′=-
3
4k
.由此能证明k•k′为定值-
3
4
解答: 解:(Ⅰ)解:如图,∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2
点B(0,
3
)为短轴的一个端点,∠OF2B=60°,
∴b=
3
,a=
b
sin∠OF2B
=
3
sin60°
=2,…
故所求椭圆方程为
x2
4
+
y2
3
=1
.…
(Ⅱ)证明:设过点F2(1,0)的直线l方程为:y=k(x-1).…
y=k(x-1)
x2
4
+
y2
3
=1

得:(4k2+3)x2-8k2x+4k2-12=0,…
因为点F2(1,0)在椭圆内,所以直线l和椭圆都相交,
即△>0恒成立.
设点E(x1,y1),F(x2,y2),则x1+x2=
8k2
4k2+3
x1x2=
4k2-12
4k2+3
.…
因为直线AE的方程为:y=
y1
x1-2
(x-2)

直线AF的方程为:y=
y2
x2-2
(x-2)
,…
令x=3,得M(3,
y1
x1-2
),N(3,
y2 
x2-2
),
所以点P的坐标(3,
1
2
(
y1
x1-2
+
y2
x2-2
)
).…
直线PF2 的斜率为k=
1
2
(
y1
x1-2
+
y2
x2-2
)-0
3-1

=
1
4
y1
x1-2
+
y2
x2-2

=
1
4
x1y2+x2y1-2(y1+y2)
x1x2-2(x1+x2)+4

=
1
4
2kx1x2-3k(x1+x2)+4k
x1x2-2(x1+x2)+4

=
1
4
2k•
4k2-12
4k2+3
-3k•
8k2
4k2+3
+4k
4k2-12
4k2+3
-2•
8k2
4k2+3
+4

=-
3
4k

所以k•k′为定值-
3
4
.…
点评:本题考查椭圆方程的求法,考查两直线的斜率的乘积为定值的证明,解题时要认真审题,注意韦达定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=f(x)为定义在R上的增函数,对任意的x∈R都有f(x)+f(-x)=0,设z=x+2y,x,y满足不等式f(x2-2x)+f(2y-y2)≥0,则当1≤x≤4时,z的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项a1=1,公差d=2,则a4=(  )
A、5B、6C、7D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

如图给出了计算
1
2
+
1
4
+
1
6
+…+
1
60
的值的程序框图,其中①②分别是(  )
A、i<30,n=n+2
B、i=30,n=n+2
C、i>30,n=n+2
D、i>30,n=n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(3π+α)=2sin(
2
+α),求下列各式的值.
(1)
sinα-4cosα
5sinα+2cosα

(2)sin2α+sin2α.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-blnx在点(1,f(1))处的切线为y=1.
(Ⅰ)求实数a,b的值;
(Ⅱ)是否存在实数m,当x∈(0,1]时,函数g(x)=f(x)-x2+m(x-1)的最小值为0,若存在,求出m的取值范围;若不存在,说明理由;
(Ⅲ)若0<x1<x2,求证:
x2-x1
lnx2-lnx1
<2x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
p
=(1+
3
cos2x,1),
q
=(-1,sin2x+n)(x∈R,n∈N*),且f(x)=
p
q

(Ⅰ)在锐角△ABC中,a、b、c分别是角A、B、C的对边,且c=3,△ABC的面积为3
3
,当n=1时,f(A)=
3
,求a的值.
(Ⅱ)若x∈[0,
π
2
]时,f(x)的最大值为an(an为数列{an}的通项公式),又数列{bn}满足bn=
1
an-1an
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-
3
2
ax2+a(a∈R).
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[0,2]上的最小值;
(Ⅲ)是否存在实数a使得函数f(x)在区间(-1,2)上既存在最大值又存在最小值,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组及各组的频数如表.根据以上数表绘制相应的频率分布直方图时,落在[10.95,11.15)范围内的矩形的高应为
 

分组 频数
[10.75,11.95) 12
[10.95,11.15) 29
[11.15,11.35) 46
[11.35,11.55) 11
[11.55,11.75) 2

查看答案和解析>>

同步练习册答案