【题目】已知椭圆E:
+
=1(a>b>0)过点
,且离心率e为
.![]()
(1)求椭圆E的方程;
(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G
与以线段AB为直径的圆的位置关系,并说明理由.
【答案】
(1)
解:由已知得
,解得
,
∴椭圆E的方程为 ![]()
(2)
解法一:设点A(x1y1),B(x2,y2),AB中点为H(x0,y0).
由
,化为(m2+2)y2﹣2my﹣3=0,
∴y1+y2=
,y1y2=
,∴y0=
.
G
,
∴|GH|2=
=
+
=
+
+
.
=
=
=
,
故|GH|2﹣
=
+
=
﹣
+
=
>0.
∴
,故G在以AB为直径的圆外
解法二:设点A(x1y1),B(x2,y2),则
=
,
=
.
由
,化为(m2+2)y2﹣2my﹣3=0,
∴y1+y2=
,y1y2=
,
从而
= ![]()
=
+y1y2
=
+ ![]()
=
﹣
+
=
>0.
∴
>0,又
,
不共线,
∴∠AGB为锐角.
故点G
在以AB为直径的圆外
【解析】解法一:(1)由已知得
,解得即可得出椭圆E的方程.(2)设点A(x1 , y1),B(x2 , y2),AB中点为H(x0 , y0).直线方程与椭圆方程联立化为(m2+2)y2﹣2my﹣3=0,利用根与系数的关系中点坐标公式可得:y0=
.|GH|2=
.
=
,作差|GH|2﹣
即可判断出.解法二:(1)同解法一.(2)设点A(x1 , y1),B(x2 , y2),则
=
,
=
.直线方程与椭圆方程联立化为(m2+2)y2﹣2my﹣3=0,计算
=
即可得出∠AGB,进而判断出位置关系.
科目:高中数学 来源: 题型:
【题目】已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
![]()
(1)求二面角F-BE-D的余弦值;
(2)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,公园内有一块边长为
的等边
形状的三角地,现修成草坪,图中
把草坪分成面积相等的两部分,
在
上,
在
上.
![]()
(Ⅰ)设![]()
,试用
表示
的函数关系式;
(Ⅱ)如果
是灌溉水管,为节约成本希望它最短,
的位置应该在哪里?如果
是参观线路,则希望它最长,
的位置又在哪里?请给予证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣1|+|x﹣2|
(1)求不等式f(x)≤3的解集;
(2)若不等式||a+b|﹣|a﹣b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求实数x的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{cn}的前n项和为Tn , 若数列{cn}满足各项均为正项,并且以(cn , Tn)(n∈N*)为坐标的点都在曲线
上运动,则称数列{cn}为“抛物数列”.已知数列{bn}为“抛物数列”,则( )
A.{bn}一定为等比数列
B.{bn}一定为等差数列
C.{bn}只从第二项起为等比数列
D.{bn}只从第二项起为等差数列
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com