精英家教网 > 高中数学 > 题目详情

在△ABC中,内角A,B,C所对边长分别为.

(1)求的最大值及的取值范围;

(2)求函数的最大值和最小值.

 

【答案】

(Ⅰ)的最大值为16,及的取值范围0<;(Ⅱ)最大值为3,最小值为2.

【解析】

试题分析:(Ⅰ)求的最大值及的取值范围,由向量的数量积,即,由此可想到利用余弦定理求出,通过基本不等式,可求得b•c的最大值,再结合,可求出的取值范围;(Ⅱ)求函数的最大值和最小值,可利用二倍角的正弦函数化简函数,这样化 为一个角的一个三角函数的形式,通过角的范围0<,利用正弦函数的最值,从而求出函数的最大值和最小值.

试题解析:(Ⅰ)             

   所以  ,即的最大值为16

  所以  , 又0<  所以0< 

(Ⅱ)

因0<,所以

   即时,

    即时,

考点:正弦函数的图象;平面向量数量积的运算.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对边长分别为a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,则b=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,且a,b是方程x2-2
3
x+2=0的两根,2cos(A+B)=1,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=3
2
,则B的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知B=60°,不等式x2-4x+1<0的解集为{x|a<x<c},则b=
13
13

查看答案和解析>>

同步练习册答案