精英家教网 > 高中数学 > 题目详情
已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,方程f(x)=2x至多有一个实根,求实数a、b的值.
考点:函数的零点与方程根的关系
专题:函数的性质及应用
分析:由f(-1)=-2得到
a
b
=10,由f(x)=2x至多有一个实根,得△≤0,可求得 a,b的值.
解答: 解:由f(-1)=-2,
∴lgb-lga+1=0,
∴a=10b,
∴f(x)=x2+(lga+2)x+lgb=f(x)=x2+(lga+2)x+lga-1,
∵程f(x)=2x至多有一个实根,
∴x2+(lga+2)x+lga-1=2x至多有一个实根
∴x2+xlga+lga-1=0至多有一个实根
∴△=(lga)2-4(lga-1)≤0,
即(lga-2)2≤0,
∴lga=2,
即a=100,
∴b=10,
点评:本题考查对数运算、方程解得个数问题,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,棱长为a,M、N分别是AB1、A1C1上的点,A1N=AM,
(1)求证:MN∥BB1C1C;
(2)求MN的长度最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=60°,则C的离心率为(  )
A、
3
6
B、
3
-1
C、
3
2
D、2-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
12
+
y2
9
=1上的两个焦点为F1、F2,点P在椭圆上,若线段PF1的中点Q恰好在y轴上,则
|PF1|
|PF2|
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1的参数方程为
x=-
3
t
y=2
3
+t
(t为参数),曲线C2的极坐标方程为ρ=2,则曲线C2与曲线C1交点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
1
3
≤a≤1,若函数f(x)=ax2-2x+1在区间[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a).
(1)求g(a)的函数表达式;
(2)判断函数g(a)在区间[
1
3
,1]上的单调性,并求出g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

边长为2的正方形ABCD,其内切圆与边BC切于点E、F为内切圆上任意一点,则
AE
AF
取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)=x2+mx+1图象的对称轴是x=1,
(1)求m的值;
(2)当x∈[0,4]时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx-x2+2x
(Ⅰ)求函数f(x)的图象在x=1处的切线的方程;
(Ⅱ)若函数g(x)=
1
3
x3+x2[f′(x)+2x-
4
x
+m]在区间(1,3)上不是单调函数,求m的取值范围;
(Ⅲ)若在区间(1,+∞)上,函数h(x)=
1
2
f(x)+ax2-x的图象恒在直线y=2ax(x∈R)的下方,求实数a的取值范围.

查看答案和解析>>

同步练习册答案