精英家教网 > 高中数学 > 题目详情

已知直线l过点(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是________.

 

<k<

【解析】易知圆心坐标是(1,0),圆的半径是1,直线l的方程是y=k(x+2),即kx-y+2k=0,根据点到直线的距离公式得<1,即k2<,解得-<k<

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第8课时练习卷(解析版) 题型:解答题

根据下列条件,求双曲线方程.

(1)与双曲线=1有共同的渐近线,且过点(-3,2);

(2)与双曲线=1有公共焦点,且过点(3,2).

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第6课时练习卷(解析版) 题型:解答题

如图,已知椭圆=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.

(1)若∠F1AB=90°,求椭圆的离心率;

(2)若=2·,求椭圆的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第6课时练习卷(解析版) 题型:填空题

方程=1表示椭圆,则k的取值范围是________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:填空题

已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么·的最小值为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题

已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).

(1)若l1与圆相切,求l1的方程;

(2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:填空题

已知圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题

已知直线l1、l2分别与抛物线x2=4y相切于点A、B,且A、B两点的横坐标分别为a、b(a、b∈R).

(1)求直线l1、l2的方程;

(2)若l1、l2与x轴分别交于P、Q,且l1、l2交于点R,经过P、Q、R三点作圆C.

①当a=4,b=-2时,求圆C的方程;

②当a,b变化时,圆C是否过定点?若是,求出所有定点坐标;若不是,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题

在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).

(1)求抛物线C的标准方程;

(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为-4,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点.

 

查看答案和解析>>

同步练习册答案