【题目】已知函数.
(1)若在时,有极值,求的值;
(2)在直线上是否存在点,使得过点至少有两条直线与曲线相切?若存在,求出点坐标;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线经过点,曲线的直角坐标方程为.
(1)求曲线的普通方程,曲线的极坐标方程;
(2)若,是曲线上两点,当时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是定义在上的奇函数,对,均有,已知当时, ,则下列结论正确的是( )
A. 的图象关于对称 B. 有最大值1
C. 在上有5个零点 D. 当时,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,如果存在给定的实数对,使得恒成立,则称为“函数”;
(1)判断函数,是否是“函数”;
(2)若是一个“函数”,求出所有满足条件的有序实数对;
(3)若定义域为的函数是“函数”,且存在满足条件的有序实数对和,当时,的值域为,求当时的值域;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(其中为参数,).在极坐标系(以坐标原点为极点,以轴非负半轴为极轴)中,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若曲线上恰有一个点到曲线的距离为1,求曲线的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知是圆的直径,,在圆上且分别在的两侧,其中,.现将其沿折起使得二面角为直二面角,则下列说法不正确的是( )
A.,,,在同一个球面上
B.当时,三棱锥的体积为
C.与是异面直线且不垂直
D.存在一个位置,使得平面平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位共有老年人120人,中年人360人,青年人n人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样的方法进行抽样调查,样本中的中年人为6人,则n和m的值不可以是下列四个选项中的哪组( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,的焦点为,过点的直线的斜率为,与抛物线交于,两点,抛物线在点,处的切线分别为,,两条切线的交点为.
(1)证明:;
(2)若的外接圆与抛物线有四个不同的交点,求直线的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com