精英家教网 > 高中数学 > 题目详情
12.设不等式组$\left\{\begin{array}{l}{2x+y≥2}\\{x-2y≥-4}\\{3x-y≤3}\end{array}\right.$所表示的平面区域为M,若z=2x-y+2a+b(a>0,b>0)的最大值为3,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为3$+2\sqrt{2}$.

分析 ①画可行域;②z为目标函数的纵截距;③画直线z=x-y.平移可得直线过A或B时z有最值.得到a,b关系式,然后利用基本不等式求解表达式的最小值.

解答 解:画不等式组$\left\{\begin{array}{l}{2x+y≥2}\\{x-2y≥-4}\\{3x-y≤3}\end{array}\right.$所表示的平面区域为M如图,
画直线z=2x-y+2a+b,
平移直线z=2x-y+2a+b过点A(1,0)时z有最大值3;
则z=2+2a+b=3,解得2a+b=1,a>0,b>0,
则$\frac{1}{a}$+$\frac{1}{b}$=($\frac{1}{a}$+$\frac{1}{b}$)(2a+b)=3+$\frac{2a}{b}$$+\frac{b}{a}$≥3+2$\sqrt{\frac{2a}{b}•\frac{b}{a}}$=3+2$\sqrt{2}$,当且仅当b=$\sqrt{2}a$,2a+b=1,即a=1-$\frac{\sqrt{2}}{2}$,b=$\sqrt{2}-1$时,表达式取得最小值.
故答案为:3+2$\sqrt{2}$.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,基本不等式的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若复数z=$\frac{2-i}{1+i}$,则|z|=(  )
A.1B.$\sqrt{10}$C.$\frac{{\sqrt{10}}}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知公比不为1的等比数列{an}的前n项和为Sn,a1=1,4a1,3a2,2a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=$\frac{1}{lo{g}_{2}({S}_{n}+1)}$,求满足方程b1b2+b2b3+…+bn-1bn=$\frac{2015}{2016}$的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.下面是某钢铁加工厂所生产钢管内径尺寸(单位:mm)的另一个容量为100的随机抽样样本.
25.39 25.41 25.40 25.37 25.35 25.40 25.36 25.41 25.47 25.40
25.38 25.45 25.41 25.46 25.34 25.45 25.44 25.34 25.36 25.37
25.34 25.44 25.41 25.33 25.45 25.44 25.39 25.38 25.30 25.41
25.44 25.50 25.38 25.48 25.42 25.43 25.48 25.44 25.41 25.39
25.39 25.41 25.40 25.37 25.35 25.40 25.36 25.41 25.47 25.40
25.40 25.45 25.33 25.51 25.45 25.39 25.37 25.35 25.48 25.41
25.39 25.46 25.56 25.34 25.54 25.38 25.31 25.37 25.29 25.42
25.44 25.42 25.45 25.44 25.41 25.26 25.36 25.43 25.42 25.49
25.47 25.51 25.40 25.50 25.45 25.44 25.40 25.49 25.37 25.38
25.37 25.47 25.40 25.39 25.45 25.42 25.38 25.37 25.35 25.41
根据样本数据列出频率分布表、画出频率分布直方图,并与书中的频率分布直方图比较,你能得出什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某同学在一次数学考试中有3个选择题(每题5分)不太会做,于是采用排除法,每个题目都有A、B、C、D四个选项,他对这3个题的每个题都顺利排除了一个干扰选项,在此基础上每个题随机各选一项,则该同学这3个题的得分的数学期望值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.求过直线x-3y=0和3x+y-10=0的交点,且和原点的距离等于1的直线方程y=1,或3x-4y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知{an},{bn}均为等比数列,其前n项和分别为Sn,Tn
(1)若a1=8,b2=24,且对任意的n∈N*,总有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{{3}^{n}+1}{4}$,求数列{nan]的前n项和Pn
(2)当n≤3时,bn-an=n,若数列{an}唯一,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数为奇函数的是(  )
A.y=x2B.y=2sinxC.y=2cosxD.y=2lnx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线Γ:y2=2px(p>1)的焦点为F,以F为圆心,2为半径的圆与抛物线的准线交于M,N两点,若△FMN的面积为$\sqrt{3}$,则抛物线Γ的方程为(  )
A.y2=8xB.y2=4$\sqrt{3}$xC.y2=4xD.y2=2$\sqrt{3}$x

查看答案和解析>>

同步练习册答案