精英家教网 > 高中数学 > 题目详情

(12分) .已知函数y=f(x)= (a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<
(1)试求函数f(x)的解析式
(2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.

解:(1)∵f(x)是奇函数,∴f(-x)=-f(x),即
c=0,∵a>0,b>0,x>0,∴f(x)=≥2,当且仅当x=时等号成立,于是2=2,∴a=b2,由f(1)<,∴2b2-5b+2<0,解得b<2,又b∈N,∴b=1,∴a=1,∴f(x)=x+.
(2)设存在一点(x0,y0)在y=f(x)的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在y=f(x)图象上,则
消去y0x02-2x0-1=0,x0=1±
y=f(x)图象上存在两点(1+,2),(1-,-2)关于(1,0)对称.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分16分)
是定义在R上的奇函数,且对任意a、b,当时,都有.
(1)若,试比较的大小关系;
(2)若对任意恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)某商品在近30天内每件的销售价格(元)与时间(天)的函数关系是 该商品的日销售量(件)与时间(天)的函数关系是,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,且满足条件:①,②③当.
(1)求证:函数为偶函数;
(2)讨论函数的单调性;
(3)求不等式的解集

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,现有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知,且,设,绿地面积为.
1、写出关于的函数关系式,并指出其定义域;
2、当为何值时,绿地面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)x2+2x-5,x∈[tt+1],若f(x)的最小值为h(t),写出h(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知函数f(x)=ax+(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)画出函数的图象并指出单调区间;
(2)利用图象讨论:
关于方程(为常数)解的个数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
,其中
(1)若为偶函数,求a的值;
(2)命题p:函数上是增函数,命题q:函数是减函数,如果p或q为真,p且q为假,求a的取值范围。
(3)在(2)的条件下,比较的大小。

查看答案和解析>>

同步练习册答案