| A. | $\frac{3}{2}$ | B. | $\frac{8}{3}$ | C. | $\frac{5}{2}$ | D. | 9 |
分析 由a5=a4+2a3 求得q=2,代入$\sqrt{{a}_{m}{a}_{n}}$=4a1得m+n=6,利用基本不等式求出它的最小值.
解答 解:由各项均为正数的等比数列{an}满足a5=a4+2a3,
可得a3q2=a3q+2a3,
∴q2-q-2=0,∴q=2.
∵$\sqrt{{a}_{m}{a}_{n}}$=a1,
∴am•an=a12
∴am•an=${{a}_{1}}^{2}$•2m+n-2=16${{a}_{1}}^{2}$,
∴2m+n-2=16,
∴m+n=6,即$\frac{1}{6}$(m+n)=1,(m∈N*,n∈N*),
∴$\frac{1}{m}$+$\frac{4}{n}$=($\frac{1}{m}$+$\frac{4}{n}$)×$\frac{1}{6}$(m+n)=$\frac{1}{6}$(1+4+$\frac{n}{m}$+$\frac{4m}{n}$)≥$\frac{1}{6}$(5+2$\sqrt{\frac{n}{m}×\frac{4m}{n}}$)=$\frac{1}{6}$×9=$\frac{3}{2}$(当且仅当$\frac{n}{m}$=$\frac{4m}{n}$,即n=2m时取,即m=2,n=4时取等号)
故选:A
点评 本题主要考查等比数列的通项公式,基本不等式的应用,根据等比数列的通项公式求出公比是解决本题的关键.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{3}$+y2=1 | C. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1 | D. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{6}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,2) | C. | ($\frac{3}{2}$,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{23}{90}$ | B. | $\frac{99}{23}$ | C. | $\frac{8}{15}$ | D. | $\frac{7}{30}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com