精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为数学公式的圆C经过坐标原点O.
(1)求圆C的方程;
(2)是否存在直线l:x-y-m=0与圆C交于不同的两点A,B,且线段AB的中点恰在抛物线x2=4y上,若l存在,请求出m的值,若l不存在,请说明理由.

解:(1)由题意,设圆心坐标为(a,a+4)
∵半径为的圆C经过坐标原点O
∴a2+(a+4)2=8
∴a2+4a+4=0
∴a=-2
∴圆心坐标为(-2,2)
∴圆C的方程:(x+2)2+(y-2)2=8
(2)将直线l:x-y-m=0与圆C联立,消去y可得:2x2-2mx+m2+4m=0
设A(x1,y1),B(x2,y2),则x1+x2=m
∴y1+y2=x1+x2+2m=3m
∵线段AB的中点恰在抛物线x2=4y上
满足方程x2=4y

∴m=0或m=24
当m=0时,△=4m2-8(m2+4m)=0,不符合题意.
当m=24时,△=4m2-8(m2+4m)<0
所以不存在直线l:x-y-m=0与圆C交于不同的两点A,B,且线段AB的中点恰在抛物线x2=4y上
分析:(1)由题意,设圆心坐标为(a,a+4),利用半径为的圆C经过坐标原点O,可得a2+(a+4)2=8,从而可得圆心坐标,进而可求圆C的方程;
(2)将直线l:x-y-m=0与圆C联立,消去y可得:2x2-2mx+m2+4m=0.设A(x1,y1),B(x2,y2),则x1+x2=m
,y1+y2=x1+x2+2m=3m,利用线段AB的中点恰在抛物线x2=4y上,可求得m=0或m=24,再验证△=4m2-8(m2+4m),即可知是否存在.
点评:本题考查的重点是圆的方程,考查直线与圆相交,解题时,将直线与圆联立是关键,判别式是否验证是易错点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为(  )
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=4cosθ,则圆心C到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程) 在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ+2
 (参数θ∈[0,2π)),若以原点为极点,射线ox为极轴建立极坐标系,则圆C的圆心的极坐标为
 
,圆C的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步练习册答案