精英家教网 > 高中数学 > 题目详情
18.△ABC的内角A、B、C所对边的长分别为a、b、c,BC边上的高为AD.
(Ⅰ)若|$\overrightarrow{AD}$|=1,求$\overrightarrow{AB}•\overrightarrow{AD}$的值;
(Ⅱ)若b=c,$\overrightarrow{AB}•\overrightarrow{AD}$=m$\overrightarrow{AB}•\overrightarrow{AC}$,当$\frac{a}{b}$∈($\sqrt{3}$,2)时,求实数m的取值范围.

分析 (Ⅰ)运用向量的数量积的定义和几何意义,即可得到;
(Ⅱ)若b=c,则D为BC的中点,运用向量的数量积的定义和余弦定理,结合中线长公式,再由不等式的性质,即可求得m的范围.

解答 解:(Ⅰ)$\overrightarrow{AB}•\overrightarrow{AD}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AD}$|cos∠BAD=|$\overrightarrow{AD}$|2=1;
(Ⅱ)若b=c,则D为BC的中点,
$\overrightarrow{AB}•\overrightarrow{AD}$=m$\overrightarrow{AB}•\overrightarrow{AC}$,即为AD2=m(cbcosA)=$\frac{1}{2}$m(c2+b2-a2),
由中线长公式可得a2+4AD2=2(b2+c2),
即有AD2=b2-$\frac{1}{4}$a2
则有m=$\frac{{b}^{2}-\frac{{a}^{2}}{4}}{{b}^{2}-\frac{{a}^{2}}{2}}$=1+$\frac{{a}^{2}}{4{b}^{2}-2{a}^{2}}$
=1+$\frac{1}{\frac{4{b}^{2}}{{a}^{2}}-2}$,
由$\frac{a}{b}$∈($\sqrt{3}$,2),可得$\frac{b}{a}$∈($\frac{1}{2}$,$\frac{1}{\sqrt{3}}$),
即有($\frac{b}{a}$)2∈($\frac{1}{4}$,$\frac{1}{3}$),
则有$\frac{1}{\frac{4{b}^{2}}{{a}^{2}}-2}$∈(-$\frac{3}{2}$,-1).
故m的范围是(-$\frac{1}{2}$,0).

点评 本题考查向量的数量积的定义和几何意义,考查余弦定理和中线长公式和不等式的性质,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快寄樱桃的费用为y(元),所寄樱桃为x(kg).
(1)求y与x之间的函数关系式;
(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设关于x的不等式x(x-a-1)<0(a∈R)的解集为M,不等式x2-2x-3≤0的解集为N.
(1)当a=4时,求集合M∩N;
(2)若M⊆N,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把45化为二进制数为(  )
A.1011112B.1011012C.1101012D.1111012

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)是定义在[-1,1]上的奇函数,且对任意的a,b∈[-1,1],当a+b≠0时,都有$\frac{f(a)+f(b)}{a+b}$>0.
(1)试证明:对任意的a,b∈[-1,1],满足:f(a)+f(-b)=f(a)-f(b);
(2)若a>b,试比较f(a)与f(b)的大小;
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则该几何体的表面积是(  )
A.44πB.48πC.$\frac{116π}{3}$D.$\frac{128π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的函数y=f(x)满足以下三个条件:
①对于任意的x∈R,都有f(x+4)=f(x);        
②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);
③函数y=f(x+2)的图象关于y轴对称   
则下列结论中正确的是(  )
A.f (4.5)<f (7)<f (6.5)B.f (7)<f (4.5)<f (6.5)C.f (7)<f (6.5)<f (4.5)D.f (4.5)<f (6.5)<f (7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有五个退役运动员和A,B两个教练拍照留念,将这七个人排成一排,要求两端都是运动员.
(1)如果每个教练的两侧都是运动员,那么共有多少种不同的排法?
(2)如果A教练和表现最为突出的运动员相邻排在一起,那么共有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=lg(2x+2-x),下列命题:①定义域为R;②值域为R;③在定义域上为偶函数;④在(-∞,0)上为减函数;⑤函数g(x)=f(x)-2恰有两个零点.其中正确命题是①③④⑤.(只要填写正确命题的序号)

查看答案和解析>>

同步练习册答案