精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的公差为d,且a2=3,a5=9,数列{bn}的前n项和为Sn,且Sn=1-
1
2
bn(n∈N*
(1)求数列{an},{bn}的通项公式;
(2)记cn=
1
2
anbn 求证:数列{cn}的前n项和 Tn≤1.
分析:(1)依题意,易求d与a1,从而可求an;由Sn=1-
1
2
bn,Sn-1=1-
1
2
bn-1,二式相减可求得
bn
bn-1
=
1
3
(n≥2),从而可求得bn
(2)利用cn=
1
2
anbn=(2n-1)•(
1
3
)
n
,Tn=1×(
1
3
)
1
+3×(
1
3
)
2
+5×(
1
3
)
3
+…+(2n-3)×(
1
3
)
n-1
+(2n-1)×(
1
3
)
n
,用错位相减法即可求得Tn
解答:解:(1)依题意,d=
a5-a2
5-2
=2,故a1=a2-d=1,
∴an=2n-1(n∈N*)…1分
在Sn=1-
1
2
bn中,令n=1,得b1=
2
3

当n≥2时,Sn=Sn=1-
1
2
bn,Sn-1=1-
1
2
bn-1
两式相减得bn=
1
2
bn-1-
1
2
bn
bn
bn-1
=
1
3
(n≥2)…4分
∴bn=
2
3
(
1
3
)
n-1
=
2
3n
(n∈N*)…5分
(2)cn=
1
2
anbn=(2n-1)•(
1
3
)
n
…6分
Tn=1×(
1
3
)
1
+3×(
1
3
)
2
+5×(
1
3
)
3
+…+(2n-3)×(
1
3
)
n-1
+(2n-1)×(
1
3
)
n

1
3
Tn=1×(
1
3
)
2
+3×(
1
3
)
3
+…+(2n-3)×(
1
3
)
n
+(2n-1)×(
1
3
)
n+1
…7分,
两式相减得:
2
3
Tn=
1
3
+2[(
1
3
)
2
+(
1
3
)
3
+…+(
1
3
)
n
]-(2n-1)×(
1
3
)
n+1

=
1
3
+2×
1
9
[1-(
1
3
)
n-1
]
1-
1
3
-(2n-1)×(
1
3
)
n+1
…9分,
∴Tn=1-(
1
3
)
n
×(n+1)…11分
∵n∈N*
∴Tn≤1…12分
点评:本题考查数列的求和,着重考查等差数列与等比数列的通项公式,考查错位相减法及综合运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案