精英家教网 > 高中数学 > 题目详情
15.化简:a${\;}^{\frac{1}{3}}$+(a${\;}^{\frac{1}{3}}$-2b${\;}^{\frac{1}{2}}$)÷(a${\;}^{-\frac{2}{3}}$-$\frac{2\root{3}{b}}{a}$)×$\frac{\sqrt{a•\root{3}{{a}^{2}}}}{\root{5}{\sqrt{a}•\root{3}{a}}}$.

分析 利用分数指数幂的性质和运算法则直接求解即可.

解答 解:a${\;}^{\frac{1}{3}}$×(a${\;}^{\frac{1}{3}}$-2b${\;}^{\frac{1}{3}}$)÷(a${\;}^{-\frac{2}{3}}$-$\frac{2\root{3}{b}}{a}$)×$\frac{\sqrt{a•\root{3}{{a}^{2}}}}{\root{5}{\sqrt{a}•\root{3}{a}}}$
=${a}^{\frac{1}{3}}$×$\frac{{a}^{\frac{1}{3}}-2{b}^{\frac{1}{3}}}{{a}^{-\frac{2}{3}}-2{a}^{-1}{b}^{\frac{1}{3}}}$×$\frac{{a}^{\frac{1}{2}}•{a}^{\frac{1}{3}}}{{a}^{\frac{1}{10}}•{a}^{\frac{1}{15}}}$
=${a}^{\frac{1}{3}}$×$\frac{{a}^{\frac{4}{3}}-2a{b}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}-2{b}^{\frac{1}{3}}}$×a${\;}^{\frac{2}{3}}$
=a2

点评 本题考查有理数指数幂的化简求值,是基础题,解题时要认真审题,注意分数指数幂的性质和运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知方程$\frac{{x}^{2}}{4-m}-\frac{{y}^{2}}{2+m}=1$.
(1)若方程表示双曲线,求实数m的取值范围.
(2)若方程表示椭圆,且椭圆的离心率为$\frac{\sqrt{3}}{2}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“m>-2”是“函数f(x)=log2(2x+m)的图象与直线x=-1有交点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知2x=3y=6z≠1,求证:$\frac{1}{x}$$+\frac{1}{y}$=$\frac{1}{z}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的定义域.
(1)y=log0.2(-x-6);
(2)y=$\root{3}{lo{g}_{2}x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知3f(x)+2f($\frac{1}{x}$)=x(x≠0),求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={(x,y)|y=-x2+(m-1)x-1},B={(x,y)|x-y+2=0,1≤x≤4},若A∩B为单元素集合,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知(m-1)x>m2-2m-5的解集为{x|x>5},则m=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题中,既是真命题又是特称命题的是(  )
A.有一个α,使tan(90°-α)=$\frac{1}{tanα}$
B.存在实数x,使sinx=$\frac{π}{2}$
C.对一切α,sin(180°-α)=sinα
D.sin15°=sin60°cos45°-cos60°sin45°

查看答案和解析>>

同步练习册答案