【题目】对于函数f(x)的定义域中任意的x1、x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
③
>0;
④f(
)<
.
当f(x)=2x时,上述结论中正确的有( )个.
A.3
B.2
C.1
D.0
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,设点F(1,0),直线l:x=﹣1,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.
(1)求动点Q的轨迹的方程;
(2)记Q的轨迹的方程为E,过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求证:直线MN必过定点R(3,0).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系 xOy 中,圆锥曲线 C 的参数方程为
(
为参数),定点
, F1,F2 是圆锥曲线 C 的左,右焦点.
(1)以原点为极点、 x 轴正半轴为极轴建立极坐标系,求经过点 F1 且平行于直线AF2 的直线 l 的极坐标方程;
(2)在(1)的条件下,设直线 l 与圆锥曲线 C 交于 E,F 两点,求弦 EF 的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的极坐标方程为
,直线l的参数方程为
(t为常数,t∈R)
(1)求直线l的普通方程和圆C的直角坐标方程;
(2)求直线l与圆C相交的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线 ![]()
(
为参数), ![]()
(
为参数).
(1)化
,
的方程为普通方程,并说明它们分别表示什么曲线;
(2)若
上的点
对应的参数为
,
为
上的动点,求
中点
到直线 ![]()
(
为参数)距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
:
的离心率为
,
、
为椭圆的左右顶点,焦点到短轴端点的距离为2,
、
为椭圆
上异于
、
的两点,且直线
的斜率等于直线
斜率的2倍.
![]()
(Ⅰ)求证:直线
与直线
的斜率乘积为定值;
(Ⅱ)求三角形
的面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1, 在直角梯形
中,
,
,
,
为线段
的中点. 将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(1)求证:
平面
;
(2)求二面角
的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
:
的离心率为
,焦距为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图,动直线
:
交椭圆
于
两点,
是椭圆
上一点,直线
的斜率为
,且
,
是线段
延长线上一点,且
,
的半径为
,
是
的两条切线,切点分别为
.求
的最大值,并求取得最大值时直线
的斜率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点. 求证:
(Ⅰ)直线EF∥平面ACD;
(Ⅱ)平面EFC⊥平面BCD.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com