精英家教网 > 高中数学 > 题目详情

【题目】设函数fx=ax2lnx

(Ⅰ)当a=时,判断fx)的单调性;(Ⅱ)设fx≤x3+4xlnx,在定义域内恒成立,求a的取值范围。

【答案】(1)f(x)在0<x≤1上,函数为减函数;在x>1上,函数为增函数;(2)a≤4.

【解析】试题分析:(1)将条件带入求导,得=x-,进而根据导数的正负可得函数的单调性;

(2)H(x)= f(x)-(x3+4x-lnx)= -x3+x2-4x=x(-x2+ax-4)所以要使f(x)≤x3+4x-lnx,在定义域内恒成立,只需H(x)≤0,在定义域内恒成立,即x(-x2+ax-4) ≤0x>0上恒成立,进而转化为-x2+ax-4≤0x>0上恒成立,进而可得解.

试题解析:

(1)、当a=时,f(x)=x2-lnx, =x-

令导函数等于0,解得x=1x=-1(舍),

所以当>0时,x>1,当<0,0<x<1

所以f(x)在0<x≤1上,函数为减函数;在x>1上,函数为增函数。

(2)令H(x)= f(x)-(x3+4x-lnx)= -x3+x2-4x=x(-x2+ax-4)

所以要使f(x)≤x3+4x-lnx,在定义域内恒成立,只需H(x)≤0,在定义域内恒成立

x(-x2+ax-4) ≤0x>0上恒成立

由于x>0,所以只要-x2+ax-4≤0x>0上恒成立

所以应满足△≤0或者,所以a≤4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于R上可导的任意函数f(x),若满足(x﹣2)f′(x)>0,则必有(
A.f(2)<f(0)<f(﹣3)
B.f(﹣3)<f(0)<f(2)
C.f(0)<f(2)<f(﹣3)
D.f(2)<f(﹣3)<f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 都与正方形所在平面垂直,

(Ⅰ)求证: ⊥平面;

(Ⅱ)过点与平面平行的平面交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一个函数的是(
A.f(x)= ,g(x)=x
B.f(x)=logaax(a>0,a≠1),g(x)=
C.f(x)=x,g(x)=
D.f(x)=lnx2 , g(x)=2lnx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的抽取方法是(
A.C C
B.C +C +C
C.C +C
D.C C +C C +C C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=x3+ax2+bx+1的导函数f′(x)满足f′(x)=2a,f′(2)=﹣b,
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f′(x)ex , 求函数g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=(2m2+3m﹣2)+(m2+m﹣2)i,(m∈R)根据下列条件,求m值.
(1)z是实数;
(2)z是虚数;
(3)z是纯虚数;
(4)z=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)、f( )的值;
(2)若满足f(x)+f(x﹣8)≤2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|1<x<2},B={x|2a﹣1<x<2a+1}.
(Ⅰ)若AB,求a的取值范围;
(Ⅱ)若A∩B=,求a的取值范围.

查看答案和解析>>

同步练习册答案