精英家教网 > 高中数学 > 题目详情

【题目】如图, 都与正方形所在平面垂直,

(Ⅰ)求证: ⊥平面;

(Ⅱ)过点与平面平行的平面交于点,求的值.

【答案】(1)见解析(2)

【解析】试题分析:(1)由条件得三角形PAD为等腰三角形,再根据等腰三角形性质得.计算由勾股定理得,最后根据线面垂直判定定理得⊥平面;(2)设点与平面平行的平面交于点,由面面平行性质定理得,所以

试题解析:(Ⅰ)连接,由题知,

共面,

,

.

由题中数据得

,

又∵

(或计算,由勾股定理得出

(Ⅱ)如图,以为原点,分别以所在直线为轴建立直角坐标系,

∴各点坐标分别为,

=, =,设平面的法向量

,得

不妨设

,∴,

平面,与平面的法向量垂直。

,

.

(方法二)在平面中,分别过点、点作直线的平行线相交于点

连结交直线与点在平面中过点

作直线于点

由题可知

,

, ∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,已知向量 =(﹣1,2),又点A(8,0),B(n,t),C(ksinθ,t),θ∈R.
(1)若 ,且 ,求向量
(2)若向量 与向量 共线,常数k>0,求f(θ)=tsinθ的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(2+x),g(x)=lg(2﹣x),设h(x)=f(x)+g(x)
(1)求函数h(x)的定义域.
(2)判断函数h(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)设z=1+i(i是虚数单位),求 +z2的值; (Ⅱ)设x,y∈R,复数z=x+yi,且满足|z|2+(z+ )i= ,试求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<α< ,cos(2π﹣α)﹣sin(π﹣α)=﹣
(1)求sinα+cosα的值;
(2)求sin(2α﹣ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①函数f(x)=loga(2x﹣1)﹣1的图象过定点(1,0);
②已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2﹣|x|;
③若 ,则a的取值范围是
其中所有正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=exsinx,其中x∈R,e=2.71828…为自然对数的底数. (Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当 时,f(x)≥kx,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=ax2lnx

(Ⅰ)当a=时,判断fx)的单调性;(Ⅱ)设fx≤x3+4xlnx,在定义域内恒成立,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=x3+ax2+bx+1的导函数f′(x)满足f′(x)=2a,f′(2)=﹣b,
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f′(x)ex , 求函数g(x)的单调区间.

查看答案和解析>>

同步练习册答案