【答案】
分析:(1)由题意知四边形AA
1D
1D是正方形,得AD
1⊥平面DA
1C,即AD
1⊥DC,可证DC⊥平面AA
1D
1D得 DC⊥A
1D
1.
(2)根据(1)的结论,利用垂直关系建立坐标系,求平面CD
1E的法向量,用向量的数量积求二面角的余弦值.
解答:解:(1)∵ABCD-A
1B
1C
1D
1是直四棱柱且AD=DD
1;
∴四边形AA
1D
1D是正方形,∴AD
1⊥A
1D,
∵AD
1⊥A
1C,A
1D∩A
1C=A
1;
∴AD
1⊥平面DA
1C;∴AD
1⊥DC(4分)
∵DD
1⊥DC,DD
1∩AD
1=D
1;
∴DC⊥平面AA
1D
1D;∴DC⊥A
1D
1(6分)
(2)由(1)知以D
1为坐标原点,建立空间直角坐标系;C(0,1,1);E(1,1,0);

;

(8分)
由题意,平面D
1EB
1的法向量为

=(0,0,1)
设平面CD
1E的法向量

=(x,y,z),则

,
令y=-1,则

=(1,-1,1)(10分)
∴

;
由图形知,二面角C-D
1E-B
1为锐角,
∴二面角C-D
1E-B
1的大小为

.
点评:本题用了线面垂直的定理及定义进行线线垂直、线面垂直的转化;借助垂直关系建立坐标系,求出平面的法向量,利用向量数量积求二面角的余弦值,注意二面角的大小.