【题目】根据全球摩天大楼的统计,至2019年,安徽省合肥市的摩天大楼已经有95座在中国城市中排名第10位,全球排名第15位,目前合肥恒大中心建设中的最高楼,外形设计成了“竹节”的形态,既体现了力量超凡,又象征着向上生长的强烈意志,更预示了未来的繁荣和兴旺.它与传承千年的“微文化”相得益建成后将跻身世界十大摩天大楼之列,若大楼由9节“竹节”组成,最上部分的4节高228米,最下部分3节高204米,且每一节高度变化均匀(即每节高度自上而下成等差数列),则该摩天大楼的总高度为( )
A.518米B.558米C.588米D.668米
科目:高中数学 来源: 题型:
【题目】已知曲线
(
为参数),
(
为参数)
(Ⅰ)将
的方程化为普通方程,并说明它们分别表示什么曲线;
(Ⅱ)若
上的点对应的参数为
,
为
上的动点,求
中点
到直线
(
为参数)距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量
(单位:亿元)对年销售额
(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①
,②
,其中
均为常数,
为自然对数的底数.
![]()
现该公司收集了近12年的年研发资金投入量
和年销售额
的数据,
,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令![]()
![]()
,经计算得如下数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)设
和
的相关系数为
,
和
的相关系数为
,请从相关系数的角度,选择一个拟合程度更好的模型;
(2)(i)根据(1)的选择及表中数据,建立
关于
的回归方程(系数精确到0.01);
(ii)若下一年销售额
需达到90亿元,预测下一年的研发资金投入量
是多少亿元?
附:①相关系数
,回归直线
中斜率和截距的最小二乘估计公式分别为:
,
;
② 参考数据:
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新能源汽车正以迅猛的势头发展,越来越多的企业不断推出纯电动产品,某汽车集团要对过去一年推出的四款纯电动车型中销量较低的
车型进行产品更新换代.为了了解这种车型的外观设计是否需要改进,该集团委托某调查机构对大众做问卷调查,并从参与调查的人群中抽取了
人进行抽样分析,得到如下表格:(单位:人)
喜欢 | 不喜欢 | 合计 | |
青年人 |
|
|
|
中年人 |
|
|
|
合计 |
|
|
|
(1)根据表中数据,能否在犯错误的概率不超过
的前提下认为大众对
型车外观设计的喜欢与年龄有关?
(2)现从所抽取的中年人中按是否喜欢
型车外观设计利用分层抽样的方法抽取
人,再从这
人中随机选出
人赠送五折优惠券,求选出的
人中至少有
人喜欢该集团
型车外观设计的概率;
(3)将频率视为概率,从所有参与调查的人群中随机抽取
人赠送礼品,记其中喜欢
型车外观设计的人数为
,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
对定义域内的每一个值
,在其定义域内都存在唯一的
,使
成立,则该函数为“依附函数”.
(1)判断函数
是否为“依附函数”,并说明理由;
(2)若函数
在定义域
上“依附函数”,求
的取值范围;
(3)已知函数
在定义域
上为“依附函数”.若存在实数
,使得对任意的
,不等式
都成立,求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线
的极坐标方程为
.现以极点
为原点,极轴为
轴的非负半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(1)求曲线
的直角坐标系方程和直线
的普通方程;
(2)点
在曲线
上,且到直线
的距离为
,求符合条件的
点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为梯形,
,
,
,
,面
面
,
为
的中点.
![]()
(1)求证:
;
(2)在线段
上是否存在一点
,使得
面
?若存在,请证明你的结论;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com