精英家教网 > 高中数学 > 题目详情
已知圆心为C的圆经过点A(0,2)和B(-3,3),且圆心C在直线l:x+y+5=0上.
(1)求线段AB的垂直平分线方程;
(2)求圆C的标准方程.
分析:(1)要求线段的中垂线的方程,需要先写出两个端点的中点坐标,再根据垂直的两条直线斜率之积等于-1,求出斜率,利用点斜式求出结果.
(2)法一:根据圆心的特点,求两条直线的交点的坐标,得到要求的圆的圆心圆心,根据两点之间的距离再做出半径,写出圆的标准方程;
法二:设出圆的标准式方程,利用待定系数法来得到结果.
解答:解:(1)因为A(0,2),B(-3,3),
∴线段AB的中点坐标为(-
3
2
5
2
)

直线AB的斜率kAB=
3-2
-3-0
=-
1
3

故线段AB的垂直平分线方程是y-
5
2
=3(x+
3
2
)
,即3x-y+7=0.
(2)法一由
3x-y+7=0
x+y+5=0
,得
x=-3
y=-2

∴圆心C的坐标是(-3,-2).
圆的半径长r=|AC|=
(0+3)2+(2+2)2
=5

∴圆C的标准方程是(x+3)2+(y+2)2=25.
法二,设圆C的标准方程是(x-a)2+(y-b)2=r2
依题意,得
(0-a)2+(2-b)2=r2
(-3-a)2+(3-b)2=r2
a+b+5=0

解得a=-3,b=-2,r2=25
∴圆C的标准方程是(x+3)2+(y+2)2=25
点评:本题考查直线的方程和圆的方程的求法,是一个基础题,解题时注意利用待定系数法求圆的方程时,注意应用方程思想,注意数字的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆心为C的圆经过三个点O(0,0)、A(1,3)、B(4,0)
(1)求圆C的方程;
(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(0,1)和B(-2,3),且圆心在直线l:x+2y-3=0上.
(1)求圆C的标准方程;
(2)若圆C的切线在x轴,y轴上的截距相等,求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(1,4),B(3,6),且圆心C在直线4x-3y=0上.
(1)求圆C的方程;
(2)已知直线l:y=x+m(m为正实数),若直线l截圆C所得的弦长为
14
,求实数m的值.
(3)已知点M(-4,0),N(4,0),且P为圆C上一动点,求|PM|2+|PN|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(4,1)和B(0,-3),且圆心C在直线l:2x-y-5=0上.
(Ⅰ)求圆C的标准方程;
(Ⅱ)若过点P(4,-8)直线l与圆C交点M、N两点,且|MN|=4,求直线l的方程.

查看答案和解析>>

同步练习册答案