精英家教网 > 高中数学 > 题目详情
在直三棱柱ADE-BCF中,∠ADE=90°,AD=AE=EF=2,M,N分别是AF,BC的中点.
(1)求证:MN平面CDEF;
(2)求多面体A-CDEF的体积V.
(1)证明:连接BF,则BF过M点,连接CF,取CF的中点G,连NG

在△CBF中,NGFM,NG=FM
∴四边形MNGF为平行四边形,∴MNGF
又∵GF?平面CDEF,MN?平面CDEF
∴MN平面CDEF
(2)过A点作AP⊥DF于P点,则P为DF的中点,∴AP⊥DF
∵三棱柱为直棱柱
∴AP⊥面CDEF
∴多面体A-CDEF的体积V=
1
3
×2×2
2
×
2
=
8
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,PE⊥BD,E为垂足,则PE的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=4,E为AD的中点,点P在线段C1E上,则点P到直线BB1的距离的最小值为(  )
A.2B.
10
C.
3
10
5
D.
2
5
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果直线l是平面α的斜线,那么在平面α内(  )
A.不存在与l平行的直线
B.不存在与l垂直的直线
C.与l垂直的直线只有一条
D.与l平行的直线有无穷多条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥S-ABCD,底面为正方形,SA⊥底面ABCD,AB=AS=a,M、N分别为AB、SC中点.
(Ⅰ)求四棱锥S-ABCD的表面积;
(Ⅱ)求证:MN平面SAD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点.
①求证:AN平面MBD;
②求二面角M-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:
(1)平面EFG平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分别是AC、AB上的点,且DEBC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(1)求证:BC平面A1DE;
(2)求证:BC⊥平面A1DC;
(3)当D点在何处时,A1B的长度最小,并求出最小值.

查看答案和解析>>

同步练习册答案