精英家教网 > 高中数学 > 题目详情
如图,在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P-ABC中共有(  )个直角三角形.
A.4B.3C.2D.1

在Rt△ABC中,∠ABC=90°,
P为△ABC所在平面外一点,PA⊥平面ABC,
∴BC⊥PA,BC⊥AB,
∵PA∩AB=A,
∴BC⊥平面PAB.
∴四面体P-ABC中直角三角形有△PAC,△PAB,△ABC,△PBC.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

α、β是两个不重合的平面,在下列条件下,可判定αβ的是(  )
A.α、β都平行于直线l、m
B.α内有三个不共线的点到β的距离相等
C.l、m是α内的两条直线且lβ,mβ
D.l、m是两条异面直线且lα,mα,lβ,mβ

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知矩形ABCD中AB=3,BC=a,若PA⊥平面AC,在BC边上取点E,使PE⊥DE,则满足条件的E点有两个时,a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1中,∠CAA1=60°,AA1=2AC,BC⊥平面AA1C1C.
(1)证明:A1C⊥AB;
(2)设BC=AC=2,求三棱锥C-A1BC1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)如图,四棱锥P-ABCD的底面是矩形,PA⊥面ABCD,PA=2
19
,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.
(1)求EF的长;
(2)证明:EF⊥PC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别是PC,PD,BC的中点.
(1)求证:平面PAB平面EFG;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明;
(3)证明平面EFG⊥平面PAD,并求点D到平面EFG的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,点E满足
PE
=
1
3
PD

(1)求证:PA⊥平面ABCD;
(2)求二面角E-AE-D的余弦值.

查看答案和解析>>

同步练习册答案