【题目】如图,在四棱锥
中,
平面
,
,
≌
,
,
是线段
的中点.
![]()
(1)求证:
∥平面
;
(2)求二面角
的余弦值.
【答案】(1)证明见解析;(2)
.
【解析】
试题分析:
建立空间直角坐标系,给出相应点坐标,得平面PAB的法向量为
,由
,即可得
∥平面![]()
求出平面
的一个法向量,平面
的法向量,利用向量的夹角公式,即可求出二面角
的余弦值;
解析:(1)证明:以B为坐标原点,BA所在的直线为x轴,BC所在的直线为y轴,过点B且与平面ABC垂直的直线为z轴,建立空间直角坐标系如图所示.
![]()
则B(0,0,0),C(0,
,0),P(1,0,2),D
,A(1,0,0),E
,∴
,
,
.
显然平面PAB的法向量为
,由
,
平面
,∴
∥平面
.
(2)由(1)知
,
,
,设平面
的法向量为
,则
,取
,则
,∴
为平面
的一个法向量.同理:平面
的法向量为![]()
∴
,故二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,满足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求证:
;
(2)若{an}是等比数列,求数列{an}的通项公式;
(3)设数列{an}的前n项和为Sn , 求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为
,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a<1,集合A={x∈R|x>0},B={x∈R|2x2﹣3(1+a)x+6a>0},D=A∩B.
(1)求集合D(用区间表示);
(2)求函数f(x)=2x3﹣3(1+a)x2+6ax在D内的极值点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
1)sin213°+cos217°﹣sin13°cos17°
2)sin215°+cos215°﹣sin15°cos15°
3)sin218°+cos212°﹣sin18°cos12°
4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°
5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数;
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣4:坐标系与参数方程
在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(
),圆C的参数方程
(θ为参数).
(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(Ⅱ)判断直线l与圆C的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题:今有望海岛,立两表齐,高三丈,前後相去千步,令後表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从後表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高及去表各几何?翻译如下:要测量海岛上一座山峰
的高度
,立两根高三丈的标杆
和
,前后两竿相距
步,使后标杆杆脚
与前标杆杆脚
与山峰脚
在同一直线上,从前标杆杆脚
退行
步到
,人眼著地观测到岛峰,
、
、
、三点共线,从后标杆杆脚
退行
步到
,人眼著地观测到岛峰,
、
、
三点也共线,则山峰的高度
__________步.(古制
步
尺,
里
丈
尺
步)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD(AB>AD)为长方形的材料,沿AC折叠后AB'交DC于点P,设△ADP的面积为S2 , 折叠后重合部分△ACP的面积为S1 .
(Ⅰ)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;
(Ⅱ)求面积S2最大时,应怎样设计材料的长和宽?
(Ⅲ)求面积(S1+2S2)最大时,应怎样设计材料的长和宽?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+
|﹣|x﹣
|;
(1)作出函数f(x)的图象;
(2)根据(1)所得图象,填写下面的表格:
性质 | 定义域 | 值域 | 单调性 | 奇偶性 | 零点 |
f(x) |
(3)关于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6个不同的实数解,求n的取值范围. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com