精英家教网 > 高中数学 > 题目详情
(不等式选做题)不等式a2-3a≤|x+3|+|x-1|对任意实数x恒成立,实数a的取值范围为
[-1,4]
[-1,4]
分析:令f(x)=|x+3|+|x-1|,依题意,a2-3a≤f(x)min,由绝对值不等式可知f(x)min=4,从而解不等式a2-3a≤4即可求得实数a的取值范围.
解答:解:令f(x)=|x+3|+|x-1|,
∵不等式a2-3a≤|x+3|+|x-1|对任意实数x恒成立,
∴a2-3a≤f(x)min
又f(x)=|x+3|+|x-1|≥|x+3-(x-1)|=4,即f(x)min=4,
∴a2-3a≤4,
解得-1≤a≤4.
∴实数a的取值范围为[-1,4].
故答案为:[-1,4].
点评:本题考查绝对值不等式的解法,考查函数恒成立问题,求得f(x)=|x+3|+|x-1|的最小值是关键,考查转化思想与解不等式的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.(不等式选做题)不等式|3x-6|-|x-4|>2x的解集为
 


B.(几何证明选做题)如图,直线PC与圆O相切于点C,割线PAB经过圆心O,
弦CD⊥AB于点E,PC=4,PB=8,则CE=
 

C.(坐标系与参数方程选做题)在极坐标系中,圆ρ=4cosθ的圆心到直线ρsin(θ+
π
4
)=2
2
的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|2x-1|<3的解集为
(-1,2)
(-1,2)

B、(选修4-1几何证明选讲) 如图所示,AC和AB分别是⊙O的切线,且OC=3,AB=4,延长AO到D点,则△ABC的面积是
192
25
192
25

C.(坐标系与参数方程选做题)参数方程
x=cosα
y=1+sinα
(α为参数)化成普通方程为
x2+(y-1)2=1
x2+(y-1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)(不等式选做题)
 设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是
R
R

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(不等式选做题)不等式|
x+1
x-1
|≥1
的解集是
(-∞,0]
(-∞,0]

B.(几何证明选做题) 如图,以AB=4为直径的圆与△ABC的两边分别交于E,F两点,∠ACB=60°,则EF=
2
2

C.(坐标系与参数方程选做题) 在极坐标中,已知点P为方程ρ(cosθ+sinθ)=1所表示的曲线上一动点,Q(2,
π
3
),则|PQ|的最小值为
6
2
6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:(考生注意:请在下列三题中任选一题作答,如果多做,则按所做第一题评分)
A.(不等式选做题)不等式
x+5
(x-1)2
≥2
的解集是
[-
1
2
,1)∪(1,3]
[-
1
2
,1)∪(1,3]

B.(几何证明选做题) 如图,⊙O的直径AB=6cm,P是延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,若∠CAP=30°,则PC=
3
3
3
3

C.(坐标系与参数方程选做题)已知直线x+2y-4=0与
x=2-3cosθ
y=1+3sinθ
(θ为参数)相交于A、B两点,则|AB|=
6
6

查看答案和解析>>

同步练习册答案