精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,Sn为{an}的前n项和,且S3=
7
2
,S6=
63
2

(1)求an
(2)求数列{nan}的前n项和Tn
分析:(1)依题意,可得到关于首项a1与公比q的方程组,解之即可,从而可求an
(2)由(1)知an=2n-2,于是Tn=1•2-1+2•20+3•21+…+n•2n-2,利用错位相减法即可求得Tn
解答:解:(1)当q=1时,不合题意,舍去-------------------------(1分)
当q≠1时,
a1(1-q3)
1-q
=
7
2
a1(1-q6)
1-q
=
63
2

解得q=2,a1=
1
2
---------------------------------------(4分)
所以an=2n-2------------------------------------(6分)
(2)nan=n•2n-2---------------------------------------------------(7分)
所以Tn=1•2-1+2•20+3•21+…+n•2n-2 ①
2Tn=1•20+2•21+…+(n-1)•2n-2+n•2n-1 ②
①-②:-Tn=
1
2
+20+21+…+2n-2-n•2n-1--------------------------(9分)
所以Tn=(n-1)•2n-1+
1
2
----------------------------------------------------------(12分)
点评:本题考查等比数列的求和公式的应用,着重考查错位相减法求和,考查解方程的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案