在平面直角坐标系xoy中,曲线C1的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M(1,)对应的参数j=,曲线C2过点D(1,).
(I)求曲线C1,C2的直角坐标方程;
(II)若点A(r1,q),B(r2,q+)在曲线C1上,求的值.
(1)曲线C1的方程为,曲线的方程为;(2).
解析试题分析:本题主要考查直角坐标系与极坐标系之间的转化、参数方程与普通方程的互化,考查学生的转化能力和计算能力.第一问,利用参数方程和普通方程的互化公式得到曲线的方程,先设出曲线的普通方程,将点转化为直角坐标代入所设的曲线的方程中,得到的值,即得到曲线的直角坐标方程;第二问,因为点在曲线上,所以代入到的方程中,得到2个表达式,代入到所求的式子中即可.
试题解析:(I)将及对应的参数,
代入,得,
即,
所以曲线C1的方程为.
设圆的半径为,由题意圆的方程为,(或).
将点代入,得,即,
(或由,得,代入,得),
所以曲线的方程为,或.
(Ⅱ)因为点,在曲线上,
所以,,
所以.
考点:1.参数方程与普通方程的互化;2.极坐标与直角坐标的互化.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知直线的参数方程是(为参数);以为极点,轴正半轴为极轴的极坐标系中,圆的极坐标方程为.
(1)写出直线的普通方程与圆的直角坐标方程;
(2)由直线上的点向圆引切线,求切线长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线C的极坐标方程为ρ=4cos θ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为 (t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线的参数方程为(t为参数),曲线C的参数方程为
(为参数).
(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线的位置关系;
(2)设点Q是曲线C上的一个动点,求点Q到直线的距离的最小值与最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数).
(Ⅰ)写出直线的普通方程与曲线的直角坐标方程;
(Ⅱ)设曲线经过伸缩变换得到曲线,设为曲线上任一点,求的最小值,并求相应点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,已知圆的参数方程(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆的极坐标方程;
(Ⅱ)直线,射线与圆的交点为,与直线的交点为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平面直角坐标系中,直线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.
(Ⅰ)求直线的极坐标方程;
(Ⅱ)若直线与曲线相交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知在直角坐标系中,曲线的参数方程为(为非零常数,为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的方程为.
(Ⅰ)求曲线的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数,使得直线与曲线有两个不同的公共点,且(其中为坐标原点)?若存在,请求出;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线的参数方程为,(为参数,)。
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com