精英家教网 > 高中数学 > 题目详情
已知函数f(x)=px--2lnx。
(1)若p=2,求曲线f(x)在点(1,f(1))处的切线;
(2)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(3)设函数,若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范围。
解:(1)当p=2时,函数
f(1)=2-2-2ln1=0,f'(x)=
曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=2+2-2=2
从而曲线f(x)在点(1,f(1))处的切线方程为y-0=2(x-1),
即y=2x-2。
(2)
令h(x)=px2-2x+p,要使f(x)在定义域(0,+∞)内是增函数,
只需h(x)≥0在(0,+∞)内恒成立,
由题意p>0,h(x)=px2-2x+p的图象为开口向上的抛物线,对称轴方程为

只需
即p≥1时,h(x)≥0,f'(x)≥0,
∴f(x)在(0,+∞)内为增函数,正实数p的取值范围是[1,+∞)。
(3)∵在[1,e]上是减函数,
∴x=e时,g(x)min=2
x=1时,g(x)max=2e,
即g(x)∈[2,2e]
①当p<0时,h(x)=px2-2x+p其图象为开口向下的抛物线,对称轴在y轴的左侧,
且h(0)<0,
所以f(x)在x∈ [1,e]内是减函数,
当p=0时,h(x)=-2x
因为x∈[1,e],
所以h(x)<0,
此时,f(x)在x∈[1,e]内是减函数,
故当p≤0时,f(x)在x∈[1,e]上单调递减=f(1)=0<2,不合题意;
②当0<p<1时,x∈[1,e]
所以f(x)=
又由(2)知当p=1时f(x)在 x∈[1,e]上是增函数,

不合题意;
③当p≥1时,由(2)知f(x)在x∈[1,e]上是增函数
f(1)= 0<2
又g(x)在x∈[1,e]上是减函数,
故只需f(x)max>g(x)min,x∈[1,e],

g(x)min=2,即
解得
所以实数p的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
23
x3-2ax2+3x(x∈R).
(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:两个连续函数(图象不间断)f(x)、g(x)在区间[a,b]上都有意义,则称函数|f(x)+g(x)|在[a,b]上的最大值叫做函数f(x)与g(x)在区间[a,b]上的“绝对和”.已知函数f(x)=x3,g(x)=x3-3ax2+2.
(Ⅰ)若函数y=g(x)在点P(1,g(1))处的切线与直线y=x+2平行,求a的值;
(Ⅱ)在(Ⅰ)的条件下求汉顺f(x)与g(x)在区间[0,2]上的“绝对值”
(Ⅲ)记f(x)与g(x)在区间[0,2]上的“绝对和”为h(a),a>
32
,且h(a)=2,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+c(a,b,c∈R,a≠0)的图象过点P( 1,2),且在点P处的切线与直线x-3y=0垂直.
(1)若c∈[0,1),试求函数f(x)的单调区间;
(2)若a>0,b>0且(-∞,m),(n,+∞)是f(x)的单调递增区间,试求n-m-2c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)已知函数f(x)=alnx-bx2的图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2.
(Ⅰ)求a,b的值;
(Ⅱ)设g(x)=f(x)-mx,m∈R,如果g(x)的图象与x轴交于点A(x1,0),B(x2,0),(x1<x2),AB中点为C(x0,0),求证:g′(x0)≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二阶矩阵M=(
a1
0b
)有特征值λ1=2及对应的一个特征向量
e
1
=
1
1

(Ⅰ)求矩阵M;
(II)若
a
=
2
1
,求M10
a

(2)已知直线l:
x=1+
1
2
t
y=
3
2
t
(t为参数),曲线C1
x=cosθ
y=sinθ
  (θ为参数).
(Ⅰ)设l与C1相交于A,B两点,求|AB|;
(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的
1
2
倍,纵坐标压缩为原来的
3
2
倍,得到曲线C2C,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.
(3)已知函数f(x)=log2(|x+1|+|x-2|-m).
(Ⅰ)当m=5时,求函数f(x)的定义域;
(Ⅱ)若关于x的不等式f(x)≥1的解集是R,求m的取值范围.

查看答案和解析>>

同步练习册答案